
i 
 

Saba Ahsan 

 

 

 

Multipath RTP: Applying Multipath  

Communication to Real-time 

Applications 
 

 

 

 

 

 

 

 

 

 

 

 

Faculty of Electronics, Communications and Automation 

 

 

Thesis submitted for examination for the degree of Master of 

Science in Technology. 

Espoo 16.3.2010 

 

 

 

 

 

Thesis supervisor: 

Prof. Joerg Ott 

 

 

Thesis instructor: 

       M.Sc. Varun Singh 

 

A’’ 

Aalto University 
School of Science 
and Technology 

 



i 
 

 

 

Author: Saba Ahsan 

Title: Mult ipath RTP: Applying Multipath Communication to Real-t ime Applications 

Date: November 20, 2011                                                        Number of pages:  

Faculty of Electronics, Communications and Automation 

Department: Department of Electrical and Communications Engineering  

Professorship: Networking Technology                           Code: S-38 

Supervisor: Professor Joerg Ott 

Instructors: M.Sc. Varun Singh 

In the current Internet, most transport protocols select a single path for communication 

flow between two end hosts, even when multiple paths exist. Such flows are unable to 

fully utilize the available resources. Multipath capability refers to the simultaneous use 

of multiple paths through the network, which may significantly improve performance 

and reliability. This area is of particular interest in real-time communication where it 

would improve the end-user experience by enhancing the quality of service. Firstly, 

bandwidth-hungry applications such as video streaming and IP-TV can benefit from the 

increased, combined throughput available to multihomed clients. Also, as retransmission 

of lost data is often uncharacteristic of real-time traffic because of time constraints, 

multipath senders can avoid lossy paths or send redundant data over multiple paths. 

Furthermore, session-based real-time communication can benefit from the redundancy 

by implementing failover in case of network failures.   

In this thesis, we present Multipath RTP as an extension to RTP with multipath 

capability. We propose a MPRTP scheduling algorithm for sending RTP packets over 

multiple paths in the form of a basic MPRTP implementation. Finally, we evaluate its 

performance in a virtual test environment consisting of a two multihomed clients with 

three paths available between them.  
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Chapter 1 

Introduction 
 

The last five decades of human history bore witness to one of the greatest 

technological development of all times; the evolution of information and 

communications technology (ICT).  The present world is a global village of users 

separated by thousands of miles brought together by a network of communication 

standards encompassing a wide range of multimedia. Internet, mobile phones and IP 

phones are not a luxury being enjoyed by the privileged class but a necessity that is 

available to the general masses. This trend exists because the advancement in 

communication is fuelled by the needs of the user. As time goes on, the user 

expectations are rising and the developers are striving to break new grounds and also to 

optimize the current technology.  

In the field of multimedia communication, higher performance and user 

availability are of great significance. From a communication network perspective, 

higher performance may be higher throughput, lower loss rates or greater reliability 

through redundancy. Protocols capable of utilizing available network resources to 

enhance any of these qualities can greatly improve the end-user experience and produce 

new business opportunities. Communicating devices today are equipped with multiple 

network interfaces of different or same communication standards. This adds reliability 

and redundancy in communication and also allows access to multiple networks 

simultaneously, such as WLAN and Ethernet in computers. Many times multiple paths 

would exist between two endpoints, which may or may not share common bottlenecks. 

Even though middle boxes such as routers and switches provide load sharing and 

redundancy by using multiple paths; most protocols do not recognize nor 

simultaneously use the network connections available to end devices.   
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Optimization possibilities exist for protocols that can recognize the multiple 

network connections and use them as one single resource with higher throughput and 

greater reliability. This behaviour may be referred to as pooling of network connections 

or simply multipath capability, as the protocol would be using more than one path for 

communication. It would be particularly beneficial in scenarios where common 

bottlenecks do not exist. Multipath TCP is one example of many efforts that are already 

being done to add this feature to existing transport protocols. Our emphasis, however, is 

on multimedia communication such as live or buffered video streaming, Voice over IP, 

IPTV etc. We may be able to reap maximum benefits if such enhancements can be 

added to these bandwidth-hungry, time and reliability constrained traffic flows, by 

simply utilizing already available resources.  

1.1 Problem Statement 
 

Multimedia communication applications on packet networks have been 

struggling to provide the quality of service that was available to the customer on circuit 

switched networks. Reliability, higher throughput and lossless channels are the three 

main characteristics that multimedia communication in general and real time 

communication in particular require. These characteristics can be enhanced using the 

multiple interfaces that are already available to end devices such as 3G, Wifi and 

Ethernet. Current applications are not multipath capable, and hence fail to reap this extra 

benefit.  

Multipath capability can be developed for real time communication by 

introducing a multipath extension for RTP that can simultaneously use network 

interfaces. Simultaneously using multiple network interfaces have a two-fold advantage 

for such applications. Firstly, the added resilience through fallback in case of network 

failures would help increase availability and call continuity. Secondly, in streaming 

scenarios, the combined throughput of multiple paths between the endpoints would 

allow customers to stream higher quality videos.  Multipath capability can be introduced 

to RTP applications through extensions. Since RTP has application- level 

implementation, deployment of RTP extensions is quick and easy in comparison to 

other transport protocols that require kernel- level changes.  
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1.2 Objectives and Scope 

 

Real time Protocol (RTP) is designed for transporting real time data, such as 

voice and video, over packet networks and is already deployed in the current Internet. 

An extension of RTP, capable of supporting multiple paths, would enhance quality of 

service and end user experience. For ease of deployment, it would be necessary that it is 

backward compatible and can smoothly operate within the existing network and with 

legacy RTP applications.  

The objective of this thesis is to introduce Multipath RTP as an extension for 

RTP capable of utilizing more than one path between two endpoints, when available. A 

prototype application would be designed to study the benefits of MPRTP in video 

streaming networks. Testing would be conducted in a virtual environment consisting of 

two endpoints with multiple paths available between them. The results of the 

experiments will be analysed to understand the pros and cons of MPRTP. 

The thesis covers MPRTP only for unicast networks. Although there are a 

number of use cases for MPRTP, the experiments and analysis focus primarily on video 

streaming applications. Some of the conclusions drawn may be extended for other use 

cases.  

1.3 Structure of the Thesis 

 

In the next chapter, we discuss related research in the field of multipath 

protocols. We also provide a background of RTP and references about previous work 

done for real time communication over multiple paths. In chapter 3, we discuss the 

motivation and objectives of MPRTP. We also discuss its architecture, packet structures 

and basic operation. Chapter 4 covers our implementation of MPRTP and a scheduler 

called RTP Adaptation for Multipath Protocols Using Percentage distribution (RAMP-

UP). Results of the tests conducted are discussed in chapter 5 that also evaluates the 

performance of MPRTP and shows comparisons with single path scenarios. Finally, we 

present our conclusion in chapter 6,  focusing on what benefits can be reaped from the 

use of MPRTP and what challenges lie ahead. A small discussion about future research 

works in this area is also included.  
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Chapter 2 

Background 
 

The concept of multihoming is being explored in various research circles and a 

number of protocols are being developed for introducing multipath capability in 

multihomed clients. The motivation for developing a multipath protocol specifically for 

multimedia applications is the marked difference in characteristics between real time 

and non-real time data. As obvious from the name given to it, real time data is time 

sensitive and is therefore less tolerant to delays than other kinds of data. Fortunately, 

when it comes to voice and video, the intolerance towards delay is compensated with a 

more tolerant behaviour towards loss and error. Such characteristics set real time data 

apart and hence have led to the development of protocols that were specifically designed 

for carrying real time traffic, such as RTP.  

In the first part of this chapter, we will briefly discuss some multipath protocols 

that have been developed for the internet and some of the work that has been done for 

transporting real time traffic over multiple paths. In the second part, we discuss RTP 

protocol, as it forms the basis of our work.  

2.1 Multipath Protocols 

 

Considerable amount of research has been done previously to explore the 

concept of multihoming. The developments in multipath solutions, for the internet, vary 

and include models based on network, transport or shim layers.  This section gives a 

brief overview of some such protocols.  
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2.1.1 Multipath Shim Layer Protocols  

 

One possible approach to multihoming is the introduction of a shim layer, 

without any significant changes in the network and transport layers. Shim6 and Host 

Identity Protocol are examples of such an approach.  

Shim6 [1] is a multihoming shim protocol for IPv6. This protocol enables a host 

with multiple IPv6 addresses (multiple interfaces) to maintain a state with its peers such 

that if the primary interface fails, the connection fails over to the other. Shim6 can 

enable a host to spread the load between different interfaces. It works just above the IP 

layer and is designed to have minimal impact on the transport and application layers.  

The Host Identity Protocol [2] introduces a new namespace for the host machine 

known as Host Identifier (HI), which is based on public keys. The transport layer 

protocols are bound to HIs instead of IP addresses. Also, the end-point identifiers (or 

interface identifiers) are generated from the HI. HIP supports multihoming [3] but there 

is little about the simultaneous usage of interfaces in the protoco l specification. Hence, 

it basically works for failover scenarios.  

2.1.2 Multipath Transport Layer Protocols 

 

Multipath capability within the transport layer can be seen in Stream Control 

Transmission Protocol (SCTP) and Multipath TCP (MPTCP). SCTP [4] was originally 

designed for transporting PSTN signalling over IP networks. An SCTP association is 

capable of failover in case of a network failure, hence providing robustness. However, it 

is not capable of using the paths simultaneously. SCTP has also been used fo r 

transporting RTP traffic. One research effort shows the partial reliability property of 

SCTP is used for retransmitting I-frames in an MPEG-4 video stream [5]. In another 

research work, the multihoming property of SCTP is used to provide mobility across 

heterogeneous networks for real time services [6]. 

MPTCP [7] is an extension of TCP that provides multipath capability. It pools 

path resources, providing robustness, higher throughput and congestion control with 

backward compatibility to TCP. It attains most of the goals we are trying to achieve for 

multipath real- time transport; however, TCP is not designed for real time data and 

sometimes fails to account for the requirements of such traffic. Congestion control in 
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TCP is provided at the cost of data rate, which is undesirable for real time data.  Also, 

TCP error control through retransmissions increases latency, making it unsuitable for 

real time traffic as well.  

2.1.3 Real time data over multiple paths 
 

Multipath diversity for real time traffic and specifically RTP has been explored 

before. It has been shown that redundant voice traffic is transmitted over multiple paths 

to minimize delay, losses due to late arrival and increase voice quality [10]. The authors 

showed that by using multipath communication they can achieve better results than FEC 

protected single stream. For video transmissions, works include transmission of even 

and odd frames on different paths to minimize bursty loss [11].  

A protocol based on partially reliable SCTP, called the Westwood SCTP-PR, for 

balanced multihoming of real time traffic has been presented [12]. It uses a bandwidth 

aware scheduler for balancing the traffic on multiple paths so that out-of-sequence 

packets and jitter can be minimized. When a new packet is to be sent, the scheduler 

decides which path would be used to transmit the packet. The scheduler, however, is not 

independent of the transport layer protocol.  

2.2 Real Time Protocol (RTP) 

 

Some key characteristics of voice and video data set them apart from non-real 

time data. These properties also make some of the popular transport protocols like UDP 

and TCP less than ideal for transporting such data and have led to the development of 

the Real time Transport Protocol (RTP) [8].  Firstly, Voice and video is transmitted as 

encoded samples over packet networks. Hence, the traffic is equally spaced in time. 

Adjusting the transmission interval to avoid congestion or for the sake of fairness is not 

as simple and straight forward as in non-real time data. Secondly, Human senses can 

tolerate a certain degree of losses in voice and video.  As long as the samples are kept 

small, losing a single packet is not noticeable to the human eye or ear. On the other hand 

retransmission of lost packets would cause a lot of delay and is therefore not advised for 

real time communication.  Instead forward error correction schemes are considered 

more suitable.  
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Order is important for voice and video data so there should be a sequencing 

mechanism to reorder the packets if delivered out of sequence. Furthermore, header 

overhead must be kept small in real time communication as voice payload is very small 

and a large header would lower the effective throughput. Video packets are large and 

require longer times to transmit, which also means that header overhead should be kept 

small to increase throughput.  

RTP is an end-to-end protocol designed for transporting real time data across 

unicast and multicast networks providing sequencing with minimum overhead.  It is 

independent of the underlying network and transport layers; however, it is designed to 

work best with IP/UDP stack. RTP uses Real Time Control Protocol (RTCP) for 

monitoring the quality of data delivery. RTP and RTCP do not guarantee quality of 

service and do not provide fairness.  

RTP is designed to be extensible. RTP packets consist of a fixed RTP header 

which may be followed by an extension header which may carry any additional 

information required for extensions. It is widely deployed already in real time 

applications and has an application level implementation, making it easier to deploy 

extensions provided they are backward compatible with traditional RTP. All these 

factors contribute to making RTP suitable as the basis of a multipath protocol for real 

time communication.  

We now briefly present an overview of RTP relevant to MPRTP and video 

streaming in a server/client model. Detailed information on RTP and its other use cases 

can be found in the RFC.  

2.2.1 RTP Header Format 

 

The fixed RTP header is shown in Figure 2.2-1. An extension header may follow 

the fixed RTP header. The different fields are explained below. 

 Extension bit (X) indicates if there is an extension header included in the packet.  

 CSRC Count (CC) is the number of CSRC identifiers that are included in the 

header. CSRC is defined later. Only 15 CSRCs can be identified.  
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 Sequence number is a monotonically increasing value assigned to the RTP 

packets for the purpose of reordering data and also to detect losses.  

 Timestamp indicates the “sampling instant of the first octet in the RTP data 

packet”. It is used by the receiver to p lay back the received voice or video. 

Furthermore it is used to synchronize audio with video data.  

 Synchronization Source (SSRC) is a randomly chosen identifier for the source of 

the stream. SSRC identifiers must be unique within a single RTP session.  

 Contributing Sources (CSRCs) of the stream that is being carried in the RTP 

payload. CSRC identifiers indicated in the list are actually the SSRC of the 

individual sources of the streams that are being mixed.  

 

Figure 2.2-1 RTP header format 

 

2.2.2 RTCP Receiver Report 

 

RTP receivers send feedback reports about the quality of the data being received 

to the senders in the form of RTCP Receiver Reports (RR). If a receiver is also a sender, 

an additional sender’s block is included in the report, which is discussed in the next 

section.  

The RR reports losses and jitter, and provides information that enables the 

sender to calculate RTT. The format of the packet is shown in Figure 2.2-2.  
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Figure 2.2-2 RTCP Receiver Report format  

 

  Packet type (PT) is set to 201 to indicate it is a RR.  

 Synchronization Source (SSRC) of the sender of the report.  

 SSRC_n is the SSRC of the source whose feedback is included in the report 

block.  

 Fraction lost is the number of packets lost divided by the number of packets 

expected, since the last report was sent. If duplicates were received, the loss may 

be negative, in which case the field is set to 0.    

 Cumulative number of packets lost is the number of packets lost since the start 

of the stream. It is calculated by subtracting the number of packets received from 

the number of packets expected. Late packets and duplicates are counted as 

packets received and hence this value may be negative.  

 Extended highest sequence number (EHSN) consists of two parts. The low 16 

bits are the highest sequence number received when the report was sent and the 

high 16 bits represent the number of sequence number cycles.  

 Interarrival jitter is defined as “the mean deviation (smoothed absolute value) of 

the difference D in packet spacing at the receiver compared to the sender for a 
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pair of packets” [8]. The delay D between two packet i and j can be calculated 

with the following formula, where R is the arrival time of the packet in RTP 

timestamp units and S is the RTP timestamp of the packet 

𝐷 𝑖, 𝑗 =  𝑅𝑗 − 𝑆𝑗 − (𝑅𝑖 − 𝑆𝑖) 

The jitter J is then calculated using D for two succeeding packets, i and i-1, 

on the basis of arrival. These packets may or may not be in sequence.  

𝐽 𝑖 = 𝐽 𝑖 − 1 + ( 𝐷 𝑖 − 1, 𝑖  − 𝐽 𝑖 − 1 )/16 

 Delay since last SR (DLSR) is the time difference between the reception time of 

the last SR received from this sender and sending time of this report.  

There may be profile specific extension reports that follow the report blocks in a RR.  

2.2.3 RTCP Sender Report 

 

All SRs contain a 20 octet long sender’s block which may be followed by 

receiver blocks if the sender is also a receiver. SR with a sender block is shown in 

Figure 2.2-3. The fields are explained below.  

 NTP timestamp indicates the wall clock time when this report was sent. It is 

used by senders in conjunction with timestamps in RRs to calculate RTT.  

 RTP timestamp is the same as NTP timestamp but in RTP timestamp units. This 

field is used for media synchronization, but requires that the NTP timestamps of 

the sender and receiver are synchronized.  

 Sender’s packet count indicates the number of packets sent by the sender since 

the start of transmission.  

 Sender’s payload octet count indicates the number of octets sent by the sender 

since the start of transmission.  
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Figure 2.2-3 RTCP Sender Report format  

 

2.2.4 Frequency of RTCP reports 

 

RTP specification recommends using a minimum RTCP interval of 5 seconds, 

and a wait time of at least 2.5 seconds before sending the first report. The actual interval 

is calculated dynamically using “session bandwidth” to ensure scalability with the 

number of participants. So the more the participants, the less frequently the reports are 

sent in order to avoid flooding the network. Session bandwidth is the aggregate 

bandwidth, including IP and UDP header overhead, that is utilized by all the 

participants of a session, and is provided by the application. The application may 

determine this value based on the bandwidth reserved by the network for the session, or 

the type of codec and session. All the participants must use the same value of session 

bandwidth for RTCP transmission interval calculations. RTP specification recommends 

that the control traffic is kept at 5% of the session bandwidth. In point-to-point 

scenarios such as the client/server case, each member gets half of this share.  
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2.2.5 Jitter Buffer and Playout Delay 
 

In RTP, the receiver must compensate for any variation in the clock rates of the 

sender and the receiver, network delays and out of order packets. An RTP receiver 

maintains an RTP jitter buffer to store the data for reordering, and removing duplicate 

packets as they are received. For each frame a playout time is calculated after 

compensating for jitter and clock skew. RTP does not provide any algorithms or 

approach for designing the jitter buffer or for calculating the playout time.  

The playout delay is a compromise between latency and quality in an RTP 

stream. In non-real time video streaming, some level of latency is acceptable, depending 

on the application and the user preference. When the first RTP packet is received, the 

receiver has no knowledge of the jitter or clock skew values. The receiver would 

convert the timestamp of the received packet to a time in terms of the receiver clock. 

This value is the base time, which will be used for calculating playout time of all 

subsequent RTP packets. Clock skew is the difference in the clock rate of the receiver 

and the sender, however, while calculating skew on the receiver’s side it naturally 

includes the effects of network jitter. Various algorithms exist for the calculation of 

skew. A windowed low point averaging technique [21] is used by Gstreamer[22]; a 

popular multimedia framework. If Tri is the time at which packet i is received at the 

receiver and Tsi is the time at the sender then, the drift induced by delay and added noise 

(jitter) can be calculated as 

Drift = (Tri-Tr0) – (Tsi-Ts0) 

The receiver maintains a window of delay values observed and calculates skew 

based on the minimum value in the window, DriftWmin. 

Skew = (DriftWmin + (124 x Skew) ) / 125 

Gstreamer uses a 2 second window or 512 data points, whichever is larger. It 

uses a weighting factor of 125 for calculating the average. Using the minimum delay 

values would ensure that the skew calculations are not affected by a temporary queuing 

delay experienced by a few packets.  
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2.3 Summary 

 

Various research groups have realized the importance of multipath protocols and 

different protocols have been proposed. These protocols range from shim layer solutions 

such as HIP and Shim6; to transport layer protocols such as MPTCP. Some research has 

been focused on real time data over multiple paths, however, there is little progress in 

the field of a multipath protocol for real time data. We feel that such a protocol holds 

significance, given the marked difference in properties of real time traffic.  

RTP is a protocol designed for transporting real time traffic over unicast and 

multicast networks, which currently deployed in the Internet. RTP typically runs over 

UDP/IP but is independent of the lower layers. RTP supports extensibility and can be 

utilized as the basis for developing multipath capabilities for rea l time traffic. Proper 

extensions need to be developed for this purpose, which are discussed in the next 

chapter.  
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Chapter 3 

Multipath RTP 
  

In this chapter, we discuss Multipath RTP as an extension of RTP protocol. 

MPRTP adds multipath capability to RTP by allowing senders to split a single stream of 

data over multiple paths. It would schedule the packets on the different paths based on 

the network characteristics gathered using Multipath RTCP (MPRTCP) reports. Like 

RTP/RTCP, MPRTP/MPRTCP is independent of the transport layer; however, it is 

designed to work well with UDP/IP.  

3.1 Motivation 
 

Introducing multipath capability for multihomed clients may lead to increased 

throughput and higher resilience, directly contributing to higher quality of service in 

multimedia applications. Hence multimedia communication can greatly benefit from a 

multipath protocol designed to enhance real time transport. MPRTP is one such 

solution.  

MPRTP is designed to allow simultaneously utilizing multiple paths between 

end points without any dependency on the lower layers. From an implementation 

perspective, it works on the application layer. Hence, it requires no change in kernel 

level implementations or network level infrastructure. This makes MPRTP a flexible 

solution for multipath scenarios of real time communication.  

The primary use case of MPRTP is for streaming high-bitrate multimedia 

content, such as in the case of IPTV. In such a case, increased throughput can be 

provided and bottlenecks can be avoided if either or both of the endpoints are 

multihomed. Furthermore, MPRTP can be used for load balancing of the multiple paths. 

Another use case of MPRTP is in Voice over IP (VoIP) applications, where it help s 
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increase resilience. The capability to recognize and use multiple paths enables MPRTP 

capable hosts to seamlessly switch from one path to another in case of outage or 

network problems. Also, if the paths are lossy, multiple paths can be used for sending 

redundant data.  

3.2 Goals and Requirements  

 

MPRTP applications are required to meet the following characteristics.  

 Resilience can be achieved if the protocol is capable of fa ilover. In case one of 

the paths goes down; it should gracefully shift to the other without disrupting 

communication. Packet losses can be minimized by sending redundant packets 

on other paths.  

 The protocol should be able to achieve a higher throughput than the individual 

throughput of any of the available paths.  

 The protocol should be able to work in today’s Internet environment; it should 

be able to traverse middle boxes such as NATs and firewalls. This can be 

achieved if the subflows in the multipath protocol appear as individual RTP 

flows to the middle boxes. 

 Also, the new protocol should be backward compatible with RTP applications. 

Multipath capability should be available as an option, and an MPRTP 

application should be able to communicate with legacy RTP applications. 

Unlike non-real time traffic, throughput is not the only parameter we are 

interested in when it comes to voice or video streaming. In addition to the above, 

MPRTP implementations would give better performance if the following rules are also 

met in the design.  

 Data travelling on different paths will face different network delays. A good 

multipath protocol for real time traffic should be able to minimize the jitter 

experienced by the receiver.  

 A late packet can be equivalent to a lost packet in real time scenarios; hence not 

only do we need to maximize throughput, but we also need to make sure that 
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when using paths with different characteristics, the fraction of out-of-sequence 

packets is minimal.  

3.3 Architecture 

 

An MPRTP application uses multiple paths to send and/or receive data and 

hence must perform a dual function; transport data across each path individually as well 

as maintain and synchronize the multiple paths. A layer view of MPRTP is shown in 

Figure 3.3-1. Like RTP, MPRTP is more suited to work with UDP but should be able to 

operate other transport protocols as well. It may create conflicts when used with 

multipath transport protocols.  

 

Figure 3.3-1 MPRTP Layer Model 

 

The MPRTP layer is responsible for managing the available paths. It is aware of 

new paths becoming available or old ones failing, and a maintains path characteristics 

gathered through MPRTCP reports. It also initiates and records the results for 

connectivity checks to see the health of a particular path between peers. MPRTP senders 

split a single RTP stream over the multiple paths available, a process referred to as 

packet scheduling. The packets on any particular path constitute a subflow. MPRTP 

provides unique identifiers and packet sequencing for each subflow. Each subflow is 

represented in Figure 3.3-1 as an individual RTP flow and this is how it will appear to 

the network as well. The MPRTP layer acts common to all the subflows and ensures 

that the MPRTP session appears as a single RTP session to legacy applications. In 

receivers, the MPRTP layer recombines and reorders the packets coming from the 

multiple subflows to form a single stream for the application again. An example case 

with three subflows is illustrated in Figure 3.3-2.  
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Figure 3.3-2 Example of an MPRTP scenario in the Internet 

 

3.4 Signalling 

 

RTP flows do not use in-band signaling and are hence often used in conjunction 

with other signaling protocols such as HTTP[15], RTSP[13] and SIP[14]. MPRTP also 

requires an out-of-band mechanism for session setup. MPRTP may utilize Interactive 

Connectivity Establishment (ICE)[20] for interface discovery and connectivity checks, 

which can be done prior to the session setup or later on. Interface advertisements and 

MPRTP path information is exchanged using in-band signaling through RTP and RTCP 

header extension [21] for MPRTP. The MPRTP sender may choose to increase or 

decrease the number of paths in use or change the packet scheduling mechanisms based 

on this information.   

It is noteworthy that starting with a single path ensures backward compatibility 

with RTP. MPRTP is implemented as an RTP extension and the additional information 

is carried in RTP header extensions. In a server/client scenario, if a client is not capable 

of MPRTP, it would simply ignore the MPRTP extensions in the packets received from 

the server. The server would recognize MPRTP silence from the client as multipath 

incapability and would continue using a single path for the entire session.   

3.5 MPRTP Call Flow 

 

MPRTP needs to gather information about the available paths before it can use 

them effectively. If ICE interface discovery and connectivity checks are completed prior 
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to a call setup and MPRTP capability is communicated via the RTSP/SIP setup 

messages, it is possible for an MPRTP session to begin transmitting on all available 

paths as soon as the session is established. If this is not the case, and all interfaces are 

not known, connectivity checks are not completed or MPRTP capability of the other end 

is not known, a session should begin with a single stream over a single path. In 

accordance with the objective of this work, we discuss the call flow for a server/client 

scenario for video streaming as shown in Figure 3.5-1. A1 and A2 are the interfaces of 

the server and B1 and B2 are interfaces of the client. A1-B1 and A2-B2 are the two 

available paths. The steps are explained below  

i. The session is established using RTSP or SIP over path A1-B1.   

ii. Upon successful session setup, the server begins to transmit the video 

stream to the client via path A1-B1. It includes the MPRTP extension 

header in the stream to show MPRTP capability to the client.  

iii. The client discovers a second interface B2. Interface discovery may be 

done using ICE. The client sends an interface advertisement to the server 

including address and ports for both B1 and B2.  

iv. The server responds with its own interface advertisement for A1 and A2.  

v. Connectivity checks between A2 and B2 are performed using either 

MPRTP or another protocol such as ICE.  

vi. If the connectivity checks are successful, the server splits the stream to 

transmit on both paths A1-B1 and A2-B2.  

vii. The client reorders and recombines the data received on the two paths 

before handing it over to the application.  
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3.6 MPRTP Message Formats 

 

MPRTP uses RTP/RTCP header extensions for sending MPRTP-specific 

information to peers. As already discussed, these extensions are simply ignored by peers 

that do not have MPRTP capabilities. In this section, we describe the basic header 

extensions used by MPRTP during a session.  Details of connectivity checks are not 

included in the scope of the thesis.  

3.6.1 MPRTP Subflow Header 

 

The MPRTP RTP extension header can be a subflow header or a connectivity 

check. If required, other message types can also be included in the protocol 

Figure 3.5-1 Example of MPRTP streaming in a server/client scenario 

 

Client Server 

A1 B1 B2 
Session Setup 

Streaming started A1->B1 

Interface Advertisement (B1, B2)  

Connectivity Checks 

*1  -  Stream data  is scheduled to a single path A1-B1 

*2  -  Interface B2 is discovered 

*3  -  Stream data  is scheduled to  two path A1-B1 and A2-B2 

*4  -  Data received on B1 and B2 is recombined to get the s tream 

 

 

Interface Advertisement (A1, A2) 

A2 

*1 

*3 

*2 

   *4 

Streaming started A2->B2 
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specification. A subflow header is shown highlighted in Figure 3.6-1. The fields are 

explained below.  

 

Figure 3.6-1 MPRTP subflow header  

 

 H-Ext ID : The field indicates the type of MPRTP message and has the value 

0x00 in the case of subflow header. If this field has the value 0x01, it means the 

message is a connectivity check.  

 Length : Indicates the number of bytes in the extension header excluding H-Ext 

ID and the length field itself. It has value 0x06 in case of subflow headers.  

 Subflow ID : Each subflow has a unique identifier which is carried in this field.  

 Flow specific sequence number : A strictly monotonically increasing sequence 

number assigned to each packet in the subflow.  

3.6.2 MPRTCP Sender and Receiver Reports 

 

The reports sent on a particular path will only contain subflow-specific 

information and hence are referred to as Subflow-specific SR (SSR), Subflow-specific 

RR (SRR). This ensures that the sender and receiver have information about the health 

and performance of each path and not just an overall value. A different approach would 

be to concatenate reports of various paths into a single packet and sending on all or any 

one single path. Concatenating reports of various subflows into a single packet would 

lead to larger packets, which if lost, would result in greater information loss in 
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comparison to smaller packets of flow-specific reports. Furthermore, for RTT 

measurements, we have to send reports on all available paths. Since a subflow’s report 

is only relevant as long as the path is active, it is acceptable to only send it along the 

same path rather than on any other path.  

Subflow-specific extension reports, if any, are appended to the SRR. The fields 

within SRR and SSR are the same as RTCP RR and SR respectively, making them 

backward compatible as well as easy to implement. The message format of a MPRTCP 

report is shown in Figure 3.6-2. 

 

Figure 3.6-2 MPRTCP Sender and Receiver Reports 
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3.7 Frequency of MPRTCP reports 

 

Scheduling depends on the information gathered by the sender about the path 

characteristics. This information is obtained using MPRTCP RRs that are received for 

each path. The frequency of these reports is a key factor and may directly contribute to 

the accuracy of the information gathered and subsequently, the effectiveness of the 

scheduling.  

RTCP reports are only used for feedback and reporting purposes, and do not 

affect the quality of the stream. Hence, keeping a minimum interval of 5 seconds is 

understandable. In case of MPRTCP, however, we need to consider the following 

aspects before defining a minimum transmission interval for reports.  

 In the beginning, when the sender does not know anything about the path 

characteristics, frequent reports would enable the sender to adjust the flow on 

each path more quickly and avoid sending packets on lossy or congested paths. 

Once the characteristics of the paths are known, less frequent reports would be 

acceptable.  

 Each time new RRs are received, the sender must recalculate path properties and 

if required adjust the percentage of traffic on each path. Also, both sender and 

receiver would require cycles for creating and sending the reports. The higher 

the frequency of the reports, the more computations needed.  

 If the frequency of the reports is so high that the number of packets received 

between two RRs is just 2 or 3, fields such as fraction lost may provide 

misleading information to the sender about path quality. Also, a short- lived 

deterioration in the network may unnecessarily cause the sender to switch traffic 

from the effected path.  

3.8 Jitter Buffer and Skew Calculations 
 

The role of a jitter buffer becomes exceedingly important in MPRTP. Packets 

travelling on different paths will experience different network delays and hence the 
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extent of out-of-order delivery and jitter would be increased in MPRTP in comparison 

to the single path flows of RTP. This also increases the significance of playout delay 

calculations when adaptive playout is in use.  

  
 

Figure 3.8-1Skew calculations based on overall maximum of per path skew values 

 

While calculating overall skew observed by the packets flowing over multiple 

paths, skew on each path must be considered. A suitable approach may be to use a 

windowed low-point averaging for calculating the skew value for each path separately 

at first and then using these values to calculate the overall skew. Our tests revealed that 

using a windowed high-point average for calculating the overall skew from per-path 

skew values yields desired results when multiple paths with different network delays are 

used. The overall skew should be used for playout delay calculations of all the packets 

irrespective of the path taken to ensure that packets travelling on a slower path are not 

discarded. 

Figure 3.8-1 shows the results of such a scheme when three paths are used with 

delay values of 50ms and 200ms on path1 and path3 respectively. The delay on path3 is 

100ms initially, but changes to 300ms at about 55 seconds. We see that the skew value 

remains at 150ms for the next 10 seconds. This is because the algorithm uses a 
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windowed low-point average for each path, and there will still be values of the previous 

shorter delay in the window. This approach ensures that if only a few packets are 

delayed, the skew value is not affected by it. The overall skew value starts increasing 

slowly once the older delay values are cleared. It reaches 250ms after approximately 

another 10 seconds have passed. The gradual increase is because we use averaging 

instead of absolute values in order to avoid sudden changes in the skew.  

3.9 Summary 

 

MPRTP is a protocol designed to introduce multipath capability to real time 

communication with the aim to improve quality of service. It aims on achieving higher 

throughput by resource pooling if multiple paths are available between two endpoints. It 

should also provide a higher level of resilience and lower packet losses in comparison to 

RTP under similar conditions. MPRTP is designed to be network compatible as well as 

backward compatible with RTP applications.  

An MPRTP sender is capable of splitting a single RTP stream over the available 

paths, while an MPRTP receiver reorders and recombines it before handing it over to 

the application. Packets travelling over different paths are more prone to out-of-order 

delivery and higher values of jitter than those travelling over a single path, and hence 

MPRTP receivers may require higher buffering delays for smooth playout than RTP 

receivers. Possible use cases of MPRTP include high bitrate streaming scenarios and 

voice/video calls. MPRTP can provide higher throughput for the former case and 

redundancy through fallback for the latter.  
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Chapter 4 

Implementation: A Sample Scheduler  
 

Observing the actual behavior of RTP in the presence of multiple paths is of 

great significance for refining the MPRTP protocol towards maturity. Since, one of the 

important consequences of multiple paths is the additional throughput, video streaming 

applications demanding higher bandwidth were chosen as the starting point for the 

experimentation.   

We developed a MPRTP sender based on our sample scheduler called RAMP-

UP (RTP Adaptation for Multiple Paths Using Percentage distribution). RAMP-UP is 

designed specifically for video streaming from a server to a client. It focuses on 

scheduling of packets over the multiple available paths in order to achieve higher 

efficiency. We also implemented a simple MPRTP receiver with buffering 

considerations for MPRTP. It does not, as yet, cover aspects of interface discovery nor 

connectivity checks.  

4.1 Design Decisions 

 

Regardless of how efficient the scheduling of an MPRTP sender is, if a single 

lossless path is available with sufficient capacity, using a single RTP flow on this path 

would outperform using multiple subflows on multiple paths. The reason for this is that 

the packets on a single path suffer similar network effects and would lead to a higher 

level of order and lower values of jitter. On the other hand, sending packets over 

different paths with varying network characteristics, would, in most cases, lead to out-

of-order delivery and high jitter values. Also, extra computations and memory would be 

required for managing the paths, scheduling at the sender and reordering at the receiver. 

The header overhead for MPRTP would also be introduced.  Nevertheless, the use of 
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multiple paths would still trump a single path if, for instance, none of the paths available 

provide sufficient throughput. Furthermore, the reliability and redundancy factor is also 

added when more than one path is used.  

Our design assumes that a single path cannot meet the bandwidth or reliability 

requirements for the traffic, and the use of multiple paths is necessary. This assumption 

is of little consequence, since MPRTP can be controlled to some extent by the 

application, and it may be possible for the application to assign a preferred path in the 

scenario where such a path exists. For now, RAMP-UP does not discover paths nor does 

it perform connectivity checks or interface advertisements. The maximum number of 

paths to be used, along with the IP and port combinations must be fed manually to both 

sender and receiver. This state can be achieved as a result of ICE exchange in a real 

scenario.  

RAMP-UP focuses on avoiding congested or lossy paths, however it does not 

aim to load balance the paths. As described in Chapter 2, RTP is not fair because of the 

periodic nature of real time data. Although in the presence of multiple paths, an element 

of fairness may be added to the protocol by shifting load to other paths, but we leave 

this problem to be looked into as part of future work.  

There is no distinction between congestion losses and other types of losses in the 

design. The assumption is that a path exhibiting packet loss is experiencing congestion. 

This in turn implies that the scheduler may act unpredictably over lossy paths, where the 

losses are error- induced. 

Finally, since MPRTP leads to out of order delivery when paths have different 

latencies, there should be a method of buffering to compensate for this. The buffering 

can be done either at the sender or the receiver end. When done at the sender end, the 

sender can send future packets on slower paths. However, this approach would require 

foresight and would only be successful if the sender has sufficient information about the 

paths, and the path characteristics are stable. Sender-side buffering may reduce out of 

order delivery and jitter, but would not be able to eliminate the need for receiver-side 

buffering completely, given the unpredictable nature of packet networks. In our 

solution, we used buffering at the receiver with a fixed playout delay as well as an 

adaptable skew factor. This design is beneficial because the receiver can more quickly 
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adapt to changing path characteristics as it gets the information first hand, and unlike the 

sender does not have to wait for the RTCP RR. We describe the buffering in more detail 

in the next section.  

Development was done using C/C++ application- level programming and uses 

threads for sending and receiving data on each path. A parent thread is responsible for 

scheduling packets in the sender and recombining the sub-streams in the receiver. The 

sender implements only MPRTP and does not have an in-built encoder or decoder.   

4.2 MPRTP Receiver  

 

An MPRTP receiver is responsible for recombining the data received on the 

various paths to produce a single stream of packets for the application.  In our 

implementation, we use a shared jitter buffer that not only removes jitter but also serves 

to recombine the sub streams.  A configurable playout delay is included to ensure 

smooth playback. As discussed already in the previous section, MPRTP packets may 

suffer from higher jitter and require greater reordering at the receiver, and hence would 

probably require larger playout delays in comparison to RTP receivers.  

Figure 4.2-1 shows a graphic representation of the jitter buffer when two paths 

are in use. Each packet is inserted into the jitter buffer as soon as it arrives, unless the 

playout time for the received packet has already expired, in which case it is considered 

late and is discarded. All received packets of a frame are handed over to the application 

at playout time and not before.  

 

 

Figure 4.2-1 MPRTP receiver jitter buffer for reordering 
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4.3 MPRTP Sender 
 

The MPRTP sender is designed to distribute the data on the paths available 

between the receiver and itself. It uses the MPRTCP reports to determine the 

characteristics of each path and accordingly assigns a percentage of total traffic to be 

sent on that path. Using a percentage distribution technique has two advantages over a 

per-packet decision approach. Firstly, it eliminates flapping, which means the traffic is 

shifted continuously from one path to the other. This happens if the sending bitrate is 

higher than the available capacity and increasing load on any of the paths forces it to go 

into congestion, causing the sender to constantly switch routes to avoid losses. 

Secondly, if the bitrate of the stream is increased or decreased, the change would be 

equally distributed on all paths.  

RAMP-UP sender assigns equal percentages to all available paths at startup; for 

two paths it would assign 50% to each. Every time a new packet arrives, it is assigned to 

a particular path depending on the percentage distribution. All packets from a single 

frame are sent on the same path. Since the sender is not capable of reducing the video 

bitrate, if the available bandwidth is not sufficient for the s tream, losses cannot be 

avoided.  

 

 

Figure 4.3-1 RAMP-UP Sender's queue 

 

The traffic percentage controls the number of bytes sent on the path and not the 

number of packets. We use a probabilistic approach based on random number 

generation, which adds more freedom in allocating percentage shares. This approach 

also results in even offered load for different sized packets. The effective percentage of 
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each path is adapted according to the amount of traffic that has already been sent on that 

path. The path to be used is decided whenever a new packet arrives. Given the following 

parameters for a path Z 

p1 = ratio allotted to the path 

b = Bytes already sent on the path 

t = total bytes received (including the packet that is yet to be transmitted)  

p2 = b/t 

Then the effective percentage p of path Z is p1 minus p2; and the path will be selected 

for transmission if the random number r is less than or equal to p, where r lies between 

0 and 1.  

4.4 Scheduling Algorithm 

 

The RAMP-UP scheduling algorithm is based on the assumptions discussed in 

section 4.1 and is designed for video streaming applications where more than one path 

exists between the server and the client. It is currently only capable of handling unicast 

applications, though the design may be extended to multicast. The algorithm uses a non-

aggressive approach, which implies that we do not put more traffic on a path unless 

necessary. This in turn implies that the full capacity of certain paths may never be 

known. Hence, the algorithm only distributes load and does not regulate it to provide 

congestion control.  

4.4.1 Bitrate Measurements 

 

The scheduler uses the RRs to calculate path bitrates which it uses for assigning 

percentages.  When the sender receives the i-th RR on a path j, it calculates the 

instantaneous bitrate Bi,j for that path, using the following formula 

Bi ,j =
 HSNi−1 − HSNi × (1 − Li ) × Si

ti −  ti−1
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where HSN is the highest sequence number and L is the fractional loss observed in the 

RR. The time of reception of RR is denoted by t and S is the average size of the packet 

during the interval ti-1 to ti. Figure 4.4-1 illustrates the concept graphically.  

 

 

 
Figure 4.4-1 Measurements for calculating bitrates 

 

 Based on the instantaneous bitrate the scheduler calculates two values that it 

uses for actually calculating the percentage distribution.  These are listed below.  

 

 The Tested bitrate TBi,j  is the highest bitrate observed on a path, after taking into 

account the losses. It is calculated using the following formula, where 0 ≤ α ≤ 1.  

TBj =   
TBj                                    if Li = 0, Bi ,j < TBj  

αTBj +  1 − α Bi ,j                                     else
  

 Congested bitrate CBi,j  is calculated when there are losses on the path, and low 

bitrate values are being observed.  This value is used in conjunction with the 

congestion indicator CI and the congestion time Ctime. CI is an integral value 

indicating the likelihood that a path is in congestion, and a path is considered 

congested if CI is equal to CIMAX. CI is incremented by 1 when losses are 

observed.  Ctime is the absolute time when CI was last modified or when losses 

were detected, whichever is more recent.  

Figure 4.4-2 RAMP-UP scheduler: Flowchart for calculating bitratesillustrates the 

principle graphically. 

RTCP 

RTP 
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Figure 4.4-2 RAMP-UP scheduler: Flowchart for calculating bitrates 

 

 

4.4.2 Calculating Percentage Distribution 

 

The scheduler will reassign percentages to each path based on the new set of 

bitrates. The formula used by the scheduler for this calculation depends on the number 

of routes that are congested or lossy.  We consider a path with CI = CIMAX congested, 

however, if the CI has a value greater than 0, but has not yet reached CIMAX, we 
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declare it lossy but not yet congested. This is to allow room for temporary losses to 

clear on their own. If the losses are being observed continuously, and CI reaches 

CIMAX only then would the scheduler drastically decrease traffic on the route.   

If none of the paths are congested then the assigned percentage is the ratio of the 

path’s TB to the total TB of all the paths combined. When all paths are congested the 

assigned percentage is the ratio of a path’s CB to the total CB of all the paths combined. 

If c is the number of paths that are currently congested, l are the number of lossy paths 

and n is the total number of paths available then the percentage pj that will be assigned 

to path j is calculated as follows.  

if c = 0 , pj =
TBj

 TBi
n
i=0

  

if  c = n, pj =
CBj

 CBi
n
i=0

 

If some paths are congested, while others are not i.e c < n, we use a stepwise 

approach. 

STEP I : Assign percentages to the congested routes 

For all j such that 𝐶𝐼𝑗 = 𝐶𝐼𝑚𝑎𝑥   and 0 ≤ β ≤ 1. 

 pj = Min  
TBj

 TBi
n
i=0

 ,
βCBj

SBi

    

The assigned percentage is the minimum of two terms. The first term is simply the ratio 

of the path’s TB to the total TB. The second term is based on the congested bitrate of the 

path, which is the bitrate the path exhibits during the congestion. The denominator is the 

sending bitrate 𝑆𝐵𝑖 , which is the current average bitrate of the stream updated after 

every second. Assigning ratio CBj/SBi on the congested path j would ensure that the 

bitrate on the path j is equal to CBj. However, this holds true only if SBi remains 

constant. For variable bitrate, we needed to lower the assigned ratio further to keep the 

traffic within bounds of the congested bitrate. Also, since we have uncongested paths, 

we prefer to keep the ratio of traffic on the congested paths low. Finally, if the ratio of 

the path’s TB to the total available TB is lower than the second term, then we have 
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enough bitrate available on other paths and we don’t need to put extra traffic on the 

congested path.  

STEP II: If there is at least one path that is neither lossy nor congested then assign 

percentages to the lossy routes  

For all j such that  0 <  𝐶𝐼j < 𝐶𝐼𝑚𝑎𝑥     and 0 ≤ 𝛾 ≤ 1. 

pj = Min  
TBj

 TBi
n
i=0

 ,
γCBj

SBi

   

This formula is similar to the one used in step I, with the exception of the variable γ 

instead of β. The value of γ can be higher or equal to β, so that lesser traffic is routed 

towards congested routes in comparison to lossy ones.  

STEP III : Assign percentages to the remaining routes  

For all j such that pj has still not been assigned, these would be the lossy paths if there is 

no path that is neither lossy nor congested. 

pj =
TBj

 TBunassigned

 × (1 − AP)  

where AP is the assigned percentage i.e. the sum of the percentages that has been 

assigned in Step 1 and 2. In this step we assign the percentage remaining after step I and 

II on the remaining paths. Hence more traffic is shifted to the paths with no losses, but 

even the paths with losses still get assigned some traffic.  

Figure 4.4-3 illustrates the complete principle of percentage distribution with the 

help of a flowchart.  
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4.4.3 Frequency of Redistribution 

 

Calculating percentage distribution and redistributing traffic, takes up processing 

and time. Hence, it is important to find an optimum interval for this action to take place. 

A few factors that are of significance in this matter are listed below  
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Figure 4.4-3 RAMP-UP scheduler: Flowchart for calculating percentage distribution 
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 In the beginning, the scheduler does not have any information about the path 

properties and distributes the traffic equally on all paths which may not always 

be an ideal distribution. It would be better to redistribute the traffic in a better 

manner, as soon as some information is received about the paths.  

 When there are losses on a path, changing the distribution quickly would prevent 

high loss rates. However, the losses could be a temporary condition, and reacting 

too quickly might result in an unnecessary shift of traffic.  

 When the paths are stable and enough information is known about them, the 

traffic distribution does not need to be revised too often.  

In RAMP-UP, we recalculate percentages on the expiry of the reschedule 

interval, r_int, defined in seconds. It is calculated by the following formula  

 

r_int = r_rec x (rand + 0.5) 

 

where R_INT_MIN ≤ r_rec ≤ R_INT_MAX for normal operation and is called 

the reschedule recovery. The randomization is to prevent synchronized rescheduling of 

multiple senders with common paths. r_rec is set to R_INT_MIN at startup. It is 

incremented with each recalculation until it reaches R_INT_MAX. Deviation from 

normal operation is when there is a congestion alert and the r_rec is set to zero so that 

the scheduler can redistribute traffic without any further delay. R_INT_MAX and 

R_INT_MIN can be set based on the characteristics of the available networks. For 

instance, if the application uses paths that have rapidly changing characteristic such as 

3G or GPRS, then the reassignment should be scheduled quickly and R_INT_MAX 

should be low. However, networks that are usually stable in terms of bitrate can use 

higher values of R_INT_MAX. R_INT_MIN should be large enough that the 

rescheduling occurs after at least one set of MPRTCP RRs have been received and the 

information regarding path properties has been updated.  

4.5 Summary 

 

RAMP-UP is a basic first attempt to building a scheduler for a MPRTP sender. 

The purpose of designing such an application was to be able to experiment with MPRTP 
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in a multipath environment. The results of such experiments may prove to be beneficial 

in the development and subsequent deployment of the protocol.  

The RAMP-UP sender uses RTCP RRs to estimate the bitrate on each of the 

available paths and assigns traffic percentage to the paths based on these values. The 

receiver buffers the incoming packets, reorders and recombines the sub streams on the 

different paths and hands it to the application.  

Our implementation of MPRTP sender and receiver is developed for video 

streaming scenarios; however, it may be extended at a later point to include other use 

cases of MPRTP. For the time being, the available paths are fed manually in the form of 

IPv4 addresses and ports. Path discovery through ICE or other means may also be 

incorporated at a later stage.  
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Chapter 5 

Testing and Results 
 

In this chapter, we evaluate the performance of MPRTP through RAMP-UP. 

Our evaluation includes experiments designed specifically to test our own algorithm 

design, as well as those that effectively simulate real life cases in which MPRTP may 

prove to be helpful for multihomed devices such as smart phones and tablets with fixed 

and wireless connections. In order to effectively evaluate performance with respect to 

particular path characteristics, we are sometimes forced to make simplistic assumptions 

which may not be present in real networks.  

5.1 Evaluation Environment 

 

For the evaluation, we set up a virtual environment consisting of a sender and a 

receiver, having three interfaces each. Three paths are available between the sender and 

the receiver via virtual routers as shown in Figure 5.1-1. All virtual machines run on the 

same physical machine.  

Network characteristics were emulated on the paths using NetEm [27]. Various 

tests were conducted to observe the performance of MPRTP in general and RAMP-UP 

under different network conditions. Path latency, bandwidth and losses were emulated 

during the testing.  

The RAMP-UP sender reads RTP packets saved in an rtpdump file created using 

rtp tools [19]; it adds the MPRTP header to the packets and sends them across the 

network.  The MPRTP receiver reorders the received packets and writes them to an 

rtpdump file which is later used for analysis. Furthermore, other statistical data such as 

time of arrival of packets, the path taken, observed bitrates and losses are measured and 
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recorded at the receiver as well. We chose to use H.264 constant bitrate (CBR) videos 

for the testing.  

 

Figure 5.1-1 Virtual environment for testing 

 

5.2 Test parameters 

 

The “Foreman” video sequence [28] is used for the testing. It is pre-encoded 

using Nokia’s H.264 encoder [21] at an average media rate of 1 Mbps, 30 FPS and 

GOP=16 and the video sequence is 265 seconds long. The instantaneous bitrate is 

shown in Figure 5.2-1.  

 
 

Figure 5.2-1 Instantaneous bitrate of the test video stream 
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The values assigned to the different parameters of the scheduler during the 

testing are shown in Table 5.2-1. The values were chosen after careful consideration to 

the evaluation environment and were tweaked to match our needs after some basic 

experimentation. Experiments to study the effects of each variable under different test 

scenarios was not done, instead the focus was kept on evaluating the algorithm as a 

whole under different path characteristics.   

Parameter Value 

α 0.99 

β 0.5 

γ 0.75 

CIMAX 3 

R_INT_MIN 3 seconds 

R_INT_MAX 10 seconds 
 

Table 5.2-1 Test parameter values 

 

 

In our testing, we use a minimum interval of 500ms for sending MPRTCP 

reports instead of 5 seconds. Since, we are using high bitrate streams; the ratio of 

MPRTCP reports is still within 5% of the session bandwidth. A more adaptive approach 

for calculating this interval may also be used.  

5.3 Test Results 

 

In this section we evaluate the performance of our algorithm through metrics 

such as Peak Signal-to-Noise Ratio (PSNR) and percentage loss rate. We also observe 

the traffic distribution assigned by the scheduler over the course of the time. In order to 

maintain objectivity for the reader and to avoid discussing cases that yield similar 

conclusions, we present here the results of only some of our experiments.  

5.3.1 Paths with similar properties 

 

In the first scenario, we used 2Mbps paths with 50ms path delay values. We 

repeated the experiments with different loss rates on the paths. Table 5.3-1 shows the 

results for lossless paths. It shows that the PSNR value remains the same regardless of 

the number of paths used. Table 5.3-2 and Table 5.3-3 show results when loss rates 
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were introduced on the paths. It can be seen that similar PSNR values were observed for 

single and multiple paths.  

Table 5.3-1 PSNR comparison; when paths have equal capacity & delay and no losses 

Scenario  PSNR Percentage 

packet loss All paths have 0% losses Average StdDev 

Single Path 48.4274 0.0000 0.0000 

2 paths using RAMP-UP 48.4274 0.0000 0.0000 

3paths using RAMP-UP 48.4274 0.0000 0.0000 

2paths using static distribution 48.4274 0.0000 0.0000 

3paths using static distribution 48.4274 0.0000 0.0000 

 
Table 5.3-2 PSNR comparison; when paths have equal capacity & delay and 0.5% losses 

Scenario  PSNR Percentage 

packet loss All paths have 0.5% losses Average StdDev 

Single Path 41.8868 0.5059 0.4873 

2 paths using RAMP-UP 40.3142 0.5763 0.5051 

3paths using RAMP-UP 40.4063 0.8492 0.4944 

2paths using static distribution 40.9122 0.1908 0.4916 

3paths using static distribution 40.4834 0.7529 0.4852 

 

Table 5.3-3 PSNR comparison; when paths have equal capacity & delay and 1% losses 

Scenario  PSNR Percentage 

packet loss All paths have 1% losses Average StdDev 

Single Path 36.1726 0.7050 1.0059 

2 paths using RAMP-UP 36.5637 1.0059 0.9391 

3paths using RAMP-UP 36.2120 0.5717 0.9952 

2paths using static distribution 36.4890 0.8504 1.0165 

3paths using static distribution 36.2855 0.4991 1.0797 
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Figure 5.3-1 RAMP-UP scheduler's percentage distribution over lossy paths  

 

Since RAMP-UP, by design, interprets losses as indication for congestion, we 

did not expect it to act ideally during these experiments. As expected, the behavior of 

the scheduler is not uniform when the paths have losses. We explain in the previous 

chapter that the scheduler declares a path congested if the losses are observed close 

together in time. When the loss rate is low, the losses were spread apart in time, and 

hence the scheduler does not drastically lower the traffic share of any path. Figure 5.3-1 

shows the results of an experiment where losses were 0.5% and the scheduler did not 

declare any path congested. The scheduler maintains an almost uniform distribution of 

traffic over all paths throughout the course of the experiment. The sending bitrate is the 

instantaneous bitrate of the sent stream as measured by the sender.  

5.3.2 Paths with different latencies  

 

In our second set of experiments, we use paths that have the same bandwidth but 

different latencies. The difference in latencies would result in out-of-order packets, 

which are put in order using the jitter buffer.  

Table 5.3-4 shows results of when we use a playout delay of 1 second at the 

receiver end.  As long as the playout delay is greater than the difference between the 
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latencies, the received packets can be reordered on reception. In practice, some 

processing time is needed at the receiver end, which must also be compensated in the 

playout delay along with the path latencies.  

 
Table 5.3-4 PSNR comparisons; when paths have different latencies 

 

Scenario  PSNR 

All paths have 1Mbps capacity, Latency for 

path1 50ms, path2 100ms, path3 200ms Average StdDev 

Single path (all paths) 48.4274 0.0000 

2 paths using RAMP-UP 48.4274 0.0000 

3paths using RAMP-UP 48.4274 0.0000 

2paths using static distribution 48.4274 0.0000 

3paths using static distribution 48.4274 0.0000 

 

The initial bitrate measurement on a slower path would give a slightly lower 

bitrate due to the delay in receiving the packets, hence lowering the traffic share to a 

small extent. However, this effect would diminish in later measurements. Figure 5.3-2 

shows the traffic distribution for three paths.  
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Figure 5.3-2 RAMP-UP behaviour when paths have different latencies 

5.3.3 Paths with different loss rates 
 

RAMP-UP is not designed to cope with error-induced losses and sees all lossy 

paths as congested. It is still important to see its behavior in such an environment. We 

used three paths in this experiment, all having 2Mbps bandwidth and 50ms latency. The 

losses were set to 0 on path1, 0.5% on path2 and 1% on path3. Again, RAMP-UP does 

not declare congestion on any path and hence the traffic share on each path does not 

change much as can be seen in Figure 5.3-3. The PSNR values and percentages losses 

are shown in Table 5.3-5. 

 

Table 5.3-5 PSNR comparisons; when paths have different loss rates 
 

Scenario PSNR 

Percentage 

packet loss 

All paths have 2Mbps capacity and 50ms 

latency, Loss rate for path1 0%, path2 0.05%, 

path3  1% Average StdDev 

Single Path (path1) 48.4274 0.0000 0.0000 

Single Path (path2) 41.8868 0.5059 0.4873 

Single Path (path3) 36.1726 0.7050 1.0059 
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The results for RAMP-UP with multiple paths are much better than using single 

path RTP over path3 and are comparable with single path RTP over path2. The reason is 

obviously that the amount of traffic on the lossy paths is automatically decreased when 

multiple paths are used and hence overall percentage loss is also decreased. In a 

scenario such as this, where a lossless path is available; the best approach would be to 

use the lossless path if there is enough bandwidth. A legacy RTP application would 

have no way of knowing which path is lossless, its choice of path would be random and 

it might be just as likely of picking a lossy path as picking the lossless one.  

 

Figure 5.3-3 RAMP-UP behaviour when paths have different loss rates 

5.3.4 Paths with different bandwidths  
 

RAMP-UP is specifically designed to withstand capacity changes in the 

available links by shifting traffic off congested paths. In this experiment, we have two 

available paths; path1 with fixed 1Mbps link capacity and path2 with a varying 

capacity. Both paths have fixed network delay of 50ms and no losses. Neither of the two 

2 paths using RAMP-UP (path1, path2) 43.3902 1.9475 0.2422 

3paths using RAMP-UP 40.4923 0.4918 0.4786 
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paths have enough capacity to carry the stream independently. The PSNR value is 

shown in Table 5.3-6 and it can be seen that percentage loss is kept below 0.8%.  

Table 5.3-6 PSNR and loss rate when paths have different bandwidths  

 

Scenario  PSNR Percentage 

packet loss Changing capacity on 1 path Average StdDev 

2 paths using RAMP-UP  42.9309 2.2293 0.7722 

 

Figure 5.3-4 shows the traffic distribution. It takes RAMP-UP approximately 3 

seconds to detect the losses and lower the percentage if the link goes into congestion. 

The algorithm would probe the link to see if the congestion has cleared, and balance the 

load, however, this probing only takes place at longer intervals to avoid traffic load 

oscillations between the paths.  

 

Figure 5.3-4 RAMP-UP behaviour when paths have different bandwidths 

 

5.3.5 Competing RAMP-UP senders 
 

In this experiment, we wanted to observe how RAMP-UP scheduler would 

behave while competing with another RAMP-UP sender for the same resources. There 
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are three available paths, path1 with 800kbps capacity, path2 and path3 with 1Mbps 

capacity. The delay on all paths is set to 50ms and there are no losses. Two senders A 

and B are simultaneously streaming video to two different receivers. Sender A uses 

path1 and path2, while sender B uses path1 and path3. Hence path1 is being shared by 

the two senders. The results are given in Table 5.3-7. Both senders act fairly towards 

each other resulting in a comparable PSNR and percentage loss for each flow.  Figure 

5.3-5 shows the sending rate of the two senders.  

Table 5.3-7 PSNR values for competing RAMP-UP senders 

 

Scenario  PSNR Percentage 

packet loss Competing RAMP-Ups Average StdDev 

Sender A  44.41 0.03 0.13 

Sender B 44.50 0.23 0.11 

 

  

 

Figure 5.3-5 RAMP-UP senders when competing for common resources 

5.3.6 Fixed and wireless paths  
 

Internet users often have a fixed Internet connection along with one or more 

wireless connections. Hence, to create a more practical scenario, we tested MPRTP over 

one fixed Internet path (Path 2) and a wireless 3G path (Path 1). We used a 1Mbps fixed 

capacity for the Internet path, and simulated 3G using the 300s RLC trace provided in 
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[24] with 0.5-1.0% bit error losses. The link capacity was changed at 10s slow intervals 

and 1s quick intervals for performance comparison, while the delay was kept constant.  

 
Table 5.3-8 PSNR values for fixed and wireless paths 

 

Scenario  PSNR Percentage packet 
loss Internet and 3G path Average StdDev 

3G link capacity changes at 1s 46.7173 0.2084 0.3296 

3G link capacity changes at 10s 42.4825 0.5506 0.8531 

 

Figure 5.3-6 shows the results of the slow capacity changes. The algorithm 

assigns more traffic to the Internet link whenever it experiences congestion on the 3G 

link. The intervals 110-140 sec and 180-210 seconds demonstrate the scheduler probing 

the 3G link for more capacity in order to balance the load. The lossy nature of the 3G 

link also inhibits the scheduler from putting too much load on it.  

 

 

 

Figure 5.3-6 Path1 is 3G, path2 is Internet. 3G link capacity changes at 10s 

 

Figure 5.3-7 shows the results of the quick capacity changes. In this case the 3G 

link has a higher bitrate on average resulting in a more uniform load distribution. For 

about 170 seconds, we see that the assigned ratios are not affected by the changes in 
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capacity of the 3G path. This is because the scheduler doesn’t know the actual bitrate of 

the path. Despite of the changes in the available bitrate, s ince the capacity of path 1 is 

sufficient to carry the traffic that is assigned to it, the scheduler keeps sending the same 

ratio of traffic on it.    

 

 

Figure 5.3-7 Path1 is 3G, path2 is Internet. 3G link capacity changes at 1s 

 

5.3.7 Multiple 3G paths 
 

In our final set of experiments, we evaluate the performance of our algorithm 

when using multiple 3G paths in an outdoor environment. The 3G path is simulated as 

in the previous case, with slow and quick capacity changes, 0-1% losses and similar 

delay values. The combined capacity of the two paths is always kept enough to carry the 

stream, which is approximately 1Mbps. Table 5.3-9 shows the PSNR results.  

 

Table 5.3-9 PSNR values for two 3G paths 

 

Scenario  PSNR Percentage packet 
loss Using two 3G paths Average StdDev 

Link capacity changes at 1s 46.1704 0.1751 0.9505 

Link capacity changes at 10s 39.2680 1.8932 1.4074 
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Figure 5.3-8 and 5.3-9 show the performance for slow and quick capacity 

changes, respectively. The load shifting occurs only when capacity of any path becomes 

drops so low that it is unable to carry the percentage of traffic assigned to it. This 

behavior becomes more apparent after 180s, before which the load is almost uniformly 

distributed between the two paths.  

 

Figure 5.3-8  MPRTP over two 3G paths with link capacity changes at 10s 

 

Figure 5.3-9 shows another aspect of the scheduling algorithm. At about 185 

seconds, path 1 begins to experience losses due to a drop in the available capacity and 

the algorithm starts using the CB value for calculating percentage distribution. At about 

210 seconds, path 2 goes into congestion as well. The percentages are continuously 

being updated after this point till about 250 seconds. The ratio assigned at 250 seconds 

is almost equal for both paths and similar to what it was before either of the paths had 

gone into congestion. This is because the algorithm has not seen losses on either path 

and has cleared the CI for both paths. The ratios are once again being calculated on the 

basis of TB. The ratio for path 2 is 0.54, which is slightly higher than that of path 1. The 

reason for this difference becomes clear if we see the sending bitrate of the paths 

between 190 and 210 seconds. The sending bitrate assigned to path 2 during this 

interval is higher than the bitrate observed on path 1 throughout the length of the 

experiments. This results in a higher value of TB for path 2 in comparison to path 1.  
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Figure 5.3-9  MPRTP over two 3G paths with link capacity changes at 1s 

 

5.3.8 Backward compatibility 
 

As a sanity test to ensure that our MPRTP application could perform with legacy 

RTP applications, we did a series of simple tests with gstreamer. We first used an 

MPRTP receiver to receive a stream from a gstreamer RTP sender and stored it to a file. 

The stream was successfully played back after being received. We then used a MPRTP 

sender that sent a video stream over a single path to a gstreamer RTP receiver. In this 

case as well, the stream was successfully played back. Finally, to test with multiple 

paths, we programmed a MPRTP stream multiplexer. The function of the multiplexer 

was to simply receive the incoming stream from multiple paths and transmit it over one 

single path. The final test setup is shown in Figure 5.3-10.  

In this scenario, we observed that when the out-of-order delivery and jitter 

values were within gstreamer’s buffering range, no losses were observed. However, 

when the path latencies and/or bandwidths mismatched significantly, we observed that 

three gstreamer properties needed to be adjusted to avoid losses. Firstly, for gstreamer to 

detect a stream and initialize the jitter buffer, it requires in order packets in the 

beginning, and hence using multiple paths can lead to initial frame losses due to 

misorder. Secondly, a packet should not be so late that gstreamer thinks that the stream 
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was reset, and new sequence numbers have started. Thirdly, the playout delay should be 

sufficient to avoid losses due to late arrival. All these parameters are functions of the 

receiver side buffer.     

 

Figure 5.3-10  MPRTP setup for backward compatibility test 

 

5.4 Summary 

We conducted a series of experiments to evaluate the performance of our own 

MPRTP algorithm, RAMP-UP, and also to better understand the usability and 

feasibility of MPRTP in server to client video streaming scenarios.  

Our first set of experiments focused on studying behavior over multiple paths in 

reference with specific path characteristics. We observed that when sufficient capacity 

is available, performance of MPRTP streaming over multiple paths is comparable to 

that of single path streaming. The algorithm is not able to completely avoid lossy paths 

due to design constraints, however by spreading the stream over multiple paths, the 

percentage loss is decreased. Furthermore, by using playout buffering we can effectively 

eliminate packet drops due to out-of-order delivery when the paths taken have different 

network delays.  

The second set of experiments consisted of scenarios when a single path does 

not have enough capacity/bitrate to carry the stream, and the load must be split over 

multiple paths. The algorithm was able to avoid congestion by shifting load to other 

paths. When competing for resources, it delivers some level of fairness by spreading the 

load over multiple paths. Furthermore, our simulations show that the algorithm gives 

reasonable performance when using a combination of wired and wireless paths. In 3G 

scenarios where path bitrates change over time, the algorithm is able to ramp up or 
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down the amount of traffic on the path when the bitrate increases or decreases, 

respectively.  

Finally, we performed some tests where we used RAMP-UP with gstreamer 

RTP pipelines and found that the two could work together smoothly, provided we adjust 

the playout parameters of gstreamer to compensate for packet misorder and jitter.  
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Chapter 6 

Conclusion 
 

We have presented in this work an extension for RTP that is capable of 

simultaneously utilizing multiple paths between endpoints. The extension, MPRTP, is 

backward-compatible with RTP applications. It is implemented on application- level and 

does not require any kernel- level modifications for deployment. It runs smoothly over 

UDP, however, it can run over other transport protocols as well. We also presented our 

design and implementation of a sample scheduler called RAMP-UP and a MPRTP 

receiver for video streaming scenarios.  

6.1 Multipath vs. Single path 

 

Our experiments with RAMP-UP confirmed that MPRTP is capable of 

combining the capacity of multiple paths and increase the available bandwidth, allowing 

senders to stream high quality videos. Furthermore, splitting the stream across multiple 

paths spreads the load, and prevents overloading any one path, and reduces overall 

percentage losses when some of the paths are lossy. The effects of jitter and out of order 

delivery can be minimized for the stream by using sufficient receiver side buffering, and 

introducing playout delay. We observed that RAMP-UP performance over multiple 

paths was comparable to similar single path cases. Hence, it is capable of delivering 

similar quality while exploiting additional resources.  

 For cases where paths had diverse bandwidth values, our application is able to 

spread the load across the paths so that none of the paths experiences congestion; given 

the combined bandwidth of the paths is sufficient to carry the stream. It is also able to 

shift load to other paths if it experiences congestion on a path due to competition with 

another application or any other network conditions.  
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6.2 Implementation Challenges and Backward Compatibility 

 

As discussed before, the MPRTP implementation does not require kernel- level 

modifications. This ensures quick and easy deployment. MPRTP can also be introduced 

to existing RTP applications, however since it operates between RTP and the transport 

layer, the modifications require adding an interface that communicates with both these 

layers. MPRTP senders that rely on receiver side buffering may induce higher levels of 

out-of-order delivery and delayed packets that legacy RTP receivers may not be tolerant 

to. Therefore, when upgrading legacy applications to MPRTP, we would need to modify 

the buffering parameters as well.   

Our experiments with gstreamer confirmed that MPRTP is backward compatible 

with legacy RTP applications.  The additional MPRTP header is ignored as an 

unrecognized extension.   

6.3 Future Work 

 

The work in the thesis is conclusive in providing experimental evidence of the 

advantages of MPRTP. However, the focus of our work has been video streaming in 

unicast scenarios and covers only one possible use case of MPRTP.  Our experiments 

show positive results but we need a more detailed evaluation using complex network 

conditions, wider range of bitrates and diverse video encodings. Our algorithm only 

focuses on bandwidth aggregation and congestion avoidance, whereas redundancy, 

fallback and avoiding lossy paths can greatly add to the advantages of MPRTP in media 

streaming. These aspects also need to be investigated.  

Further research is required to carry MPRTP towards maturity as a protocol. The 

possibility of integrating our research on MPRTP with rate adaptation (e.g. [25]) needs 

to be explored as part of future work. Also, research done in the area of layering and 

redundancy for RTP [26] should also be reviewed in the context of availability of 

secondary paths in case of MPRTP.  
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