
i

Saba Ahsan

Multipath RTP: Applying Multipath

Communication to Real-time

Applications

Faculty of Electronics, Communications and Automation

Thesis submitted for examination for the degree of Master of

Science in Technology.

Espoo 16.3.2010

Thesis supervisor:

Prof. Joerg Ott

Thesis instructor:

 M.Sc. Varun Singh

A’’

Aalto University
School of Science
and Technology

i

Author: Saba Ahsan

Title: Mult ipath RTP: Applying Multipath Communication to Real-t ime Applications

Date: November 20, 2011 Number of pages:

Faculty of Electronics, Communications and Automation

Department: Department of Electrical and Communications Engineering

Professorship: Networking Technology Code: S-38

Supervisor: Professor Joerg Ott

Instructors: M.Sc. Varun Singh

In the current Internet, most transport protocols select a single path for communication

flow between two end hosts, even when multiple paths exist. Such flows are unable to

fully utilize the available resources. Multipath capability refers to the simultaneous use

of multiple paths through the network, which may significantly improve performance

and reliability. This area is of particular interest in real-time communication where it

would improve the end-user experience by enhancing the quality of service. Firstly,

bandwidth-hungry applications such as video streaming and IP-TV can benefit from the

increased, combined throughput available to multihomed clients. Also, as retransmission

of lost data is often uncharacteristic of real-time traffic because of time constraints,

multipath senders can avoid lossy paths or send redundant data over multiple paths.

Furthermore, session-based real-time communication can benefit from the redundancy

by implementing failover in case of network failures.

In this thesis, we present Multipath RTP as an extension to RTP with multipath

capability. We propose a MPRTP scheduling algorithm for sending RTP packets over

multiple paths in the form of a basic MPRTP implementation. Finally, we evaluate its

performance in a virtual test environment consisting of a two multihomed clients with

three paths available between them.

Keywords: Real-time communication, Multipath transport, RTP

AALTO UNIVERSITY
SCHOOL OF SCIENCE AND TECHNOLOGY

ABSTRACT OF THE
MASTER'S THESIS

ii

Acknowledgements

Research for this thesis was funded by the Trilogy project [18] and conducted at the

Department of Communications and Networking at the Aalto School of Science and

Technology. I would like to extend my gratitude to my supervisor Jörg Ott, without whose

vision and experience, none of this would have been possible. I would also like to thank my

instructor, Varun Singh, for his support and guidance.

My sincere thanks to my colleagues in room D301, who kept my spirits high even when

things did not look so optimistic. I would also like to thank my parents for their continued

support, and my husband for believing in me.

Otaniemi, November 20, 2011

Saba Ahsan

iii

Table of Contents

Acknowledgements ... ii

Table of Contents ... iii

Abbreviations ...v

List of Figures ...vi

List of Tables ...vii

Chapter 1 Introduction ..1

1.1 Problem Statement ...2

1.2 Objectives and Scope ...3

1.3 Structure of the Thesis..3

Chapter 2 Background ..4

2.1 Multipath Protocols..4

2.1.1 Multipath Shim Layer Protocols ..5

2.1.2 Multipath Transport Layer Protocols ..5

2.1.3 Real time data over multiple paths ...6

2.2 Real Time Protocol (RTP) ..6

2.2.1 RTP Header Format ..7

2.2.2 RTCP Receiver Report..8

2.2.3 RTCP Sender Report ..10

2.2.4 Frequency of RTCP reports ...11

2.2.5 Jitter Buffer and Playout Delay ..12

2.3 Summary...13

Chapter 3 Multipath RTP ..14

3.1 Motivation...14

3.2 Goals and Requirements ...15

3.3 Architecture...16

3.4 Signalling ..17

3.5 MPRTP Call Flow ...17

3.6 MPRTP Message Formats ..19

3.6.1 MPRTP Subflow Header...19

3.6.2 MPRTCP Sender and Receiver Reports..20

3.7 Frequency of MPRTCP reports ...22

3.8 Jitter Buffer and Skew Calculations...22

3.9 Summary...24

Chapter 4 Implementation: A Sample Scheduler ...25

4.1 Design Decisions ...25

4.2 MPRTP Receiver ...27

iv

4.3 MPRTP Sender..28

4.4 Scheduling Algorithm ..29

4.4.1 Bitrate Measurements ...29

4.4.2 Calculating Percentage Distribution ...31

4.4.3 Frequency of Redistribution ..34

4.5 Summary...35

Chapter 5 Testing and Results ...37

5.1 Evaluation Environment ...37

5.2 Test parameters..38

5.3 Test Results ...39

5.3.1 Paths with similar properties..39

5.3.2 Paths with different latencies ...41

5.3.3 Paths with different loss rates ..43

5.3.4 Paths with different bandwidths ...44

5.3.5 Competing RAMP-UP senders ..45

5.3.6 Fixed and wireless paths ...46

5.3.7 Multiple 3G paths ...48

5.3.8 Backward compatibility ..50

5.4 Summary...51

Chapter 6 Conclusion..53

6.1 Multipath vs. Single path ..53

6.2 Implementation Challenges and Backward Compatibility54

6.3 Future Work ..54

References ...55

v

Abbreviations

RTP

RTCP

Real-time Transport Protocol

Real-time Transport Control Protocol

HSN

MPRTP

MPRTCP

Highest Sequence Number

Multipath Real-time Transport Protocol

Multipath Real-time Transport Control Protocol

PSNR

RR

SR

ICE

QoS

Peak Signal-to-Noise Ratio

Receiver Report

Sender Report

Interactive Connectivity Establishment

Quality of Service

vi

List of Figures

Figure 2.2-1 RTP header format ..8
Figure 2.2-2 RTCP Receiver Report format ..9
Figure 2.2-3 RTCP Sender Report format...11
Figure 3.3-1 MPRTP Layer Model...16
Figure 3.3-2 Example of an MPRTP scenario in the Internet..17
Figure 3.5-1 Example of MPRTP streaming in a server/client scenario...................................19
Figure 3.6-1 MPRTP subflow header ...20
Figure 3.6-2 MPRTCP Sender and Receiver Reports ..21
Figure 3.8-1Skew calculations based on overall maximum of per path skew values.................23
Figure 4.2-1 MPRTP receiver jitter buffer for reordering...27
Figure 4.3-1 RAMP-UP Sender's queue ...28
Figure 4.4-1 Measurements for calculating bitrates ...30
Figure 4.4-2 RAMP-UP scheduler: Flowchart for calculating bitrates.....................................31
Figure 4.4-3 RAMP-UP scheduler: Flowchart for calculating percentage distribution..............34
Figure 5.1-1 Virtual environment for testing ...38
Figure 5.2-1 Instantaneous bitrate of the test video stream ...38
Figure 5.3-1 RAMP-UP scheduler's percentage distribution over lossy paths41
Figure 5.3-2 RAMP-UP behaviour when paths have different latencies43
Figure 5.3-3 RAMP-UP behaviour when paths have different loss rates44
Figure 5.3-4 RAMP-UP behaviour when paths have different bandwidths 45
Figure 5.3-5 RAMP-UP senders when competing for common resources46
Figure 5.3-6 Path1 is 3G, path2 is Internet. 3G link capacity changes at 10s47
Figure 5.3-7 Path1 is 3G, path2 is Internet. 3G link capacity changes at 1s48
Figure 5.3-8 MPRTP over two 3G paths with link capacity changes at 10s49
Figure 5.3-9 MPRTP over two 3G paths with link capacity changes at 1s50
Figure 5.3-10 MPRTP setup for backward compatibility test ..51

file:///C:\Users\saba.ahsan1\Desktop\Thesis-%20Saba80536S-4.docx%23_Toc309636506
file:///C:\Users\saba.ahsan1\Desktop\Thesis-%20Saba80536S-4.docx%23_Toc309636514

vii

List of Tables

Table 5.2-1 Test parameter values..39
Table 5.3-1 PSNR comparison; when paths have equal capacity & delay and no losses40
Table 5.3-2 PSNR comparison; when paths have equal capacity & delay and 0.5% losses40
Table 5.3-3 PSNR comparison; when paths have equal capacity & delay and 1% losses40
Table 5.3-4 PSNR comparisons; when paths have different latencies42
Table 5.3-5 PSNR comparisons; when paths have different loss rates43
Table 5.3-6 PSNR and loss rate when paths have different bandwidths45
Table 5.3-7 PSNR values for competing RAMP-UP senders..46
Table 5.3-8 PSNR values for fixed and wireless paths ...47
Table 5.3-9 PSNR values for two 3G paths...48

1

Chapter 1

Introduction

The last five decades of human history bore witness to one of the greatest

technological development of all times; the evolution of information and

communications technology (ICT). The present world is a global village of users

separated by thousands of miles brought together by a network of communication

standards encompassing a wide range of multimedia. Internet, mobile phones and IP

phones are not a luxury being enjoyed by the privileged class but a necessity that is

available to the general masses. This trend exists because the advancement in

communication is fuelled by the needs of the user. As time goes on, the user

expectations are rising and the developers are striving to break new grounds and also to

optimize the current technology.

In the field of multimedia communication, higher performance and user

availability are of great significance. From a communication network perspective,

higher performance may be higher throughput, lower loss rates or greater reliability

through redundancy. Protocols capable of utilizing available network resources to

enhance any of these qualities can greatly improve the end-user experience and produce

new business opportunities. Communicating devices today are equipped with multiple

network interfaces of different or same communication standards. This adds reliability

and redundancy in communication and also allows access to multiple networks

simultaneously, such as WLAN and Ethernet in computers. Many times multiple paths

would exist between two endpoints, which may or may not share common bottlenecks.

Even though middle boxes such as routers and switches provide load sharing and

redundancy by using multiple paths; most protocols do not recognize nor

simultaneously use the network connections available to end devices.

2

Optimization possibilities exist for protocols that can recognize the multiple

network connections and use them as one single resource with higher throughput and

greater reliability. This behaviour may be referred to as pooling of network connections

or simply multipath capability, as the protocol would be using more than one path for

communication. It would be particularly beneficial in scenarios where common

bottlenecks do not exist. Multipath TCP is one example of many efforts that are already

being done to add this feature to existing transport protocols. Our emphasis, however, is

on multimedia communication such as live or buffered video streaming, Voice over IP,

IPTV etc. We may be able to reap maximum benefits if such enhancements can be

added to these bandwidth-hungry, time and reliability constrained traffic flows, by

simply utilizing already available resources.

1.1 Problem Statement

Multimedia communication applications on packet networks have been

struggling to provide the quality of service that was available to the customer on circuit

switched networks. Reliability, higher throughput and lossless channels are the three

main characteristics that multimedia communication in general and real time

communication in particular require. These characteristics can be enhanced using the

multiple interfaces that are already available to end devices such as 3G, Wifi and

Ethernet. Current applications are not multipath capable, and hence fail to reap this extra

benefit.

Multipath capability can be developed for real time communication by

introducing a multipath extension for RTP that can simultaneously use network

interfaces. Simultaneously using multiple network interfaces have a two-fold advantage

for such applications. Firstly, the added resilience through fallback in case of network

failures would help increase availability and call continuity. Secondly, in streaming

scenarios, the combined throughput of multiple paths between the endpoints would

allow customers to stream higher quality videos. Multipath capability can be introduced

to RTP applications through extensions. Since RTP has application- level

implementation, deployment of RTP extensions is quick and easy in comparison to

other transport protocols that require kernel- level changes.

3

1.2 Objectives and Scope

Real time Protocol (RTP) is designed for transporting real time data, such as

voice and video, over packet networks and is already deployed in the current Internet.

An extension of RTP, capable of supporting multiple paths, would enhance quality of

service and end user experience. For ease of deployment, it would be necessary that it is

backward compatible and can smoothly operate within the existing network and with

legacy RTP applications.

The objective of this thesis is to introduce Multipath RTP as an extension for

RTP capable of utilizing more than one path between two endpoints, when available. A

prototype application would be designed to study the benefits of MPRTP in video

streaming networks. Testing would be conducted in a virtual environment consisting of

two endpoints with multiple paths available between them. The results of the

experiments will be analysed to understand the pros and cons of MPRTP.

The thesis covers MPRTP only for unicast networks. Although there are a

number of use cases for MPRTP, the experiments and analysis focus primarily on video

streaming applications. Some of the conclusions drawn may be extended for other use

cases.

1.3 Structure of the Thesis

In the next chapter, we discuss related research in the field of multipath

protocols. We also provide a background of RTP and references about previous work

done for real time communication over multiple paths. In chapter 3, we discuss the

motivation and objectives of MPRTP. We also discuss its architecture, packet structures

and basic operation. Chapter 4 covers our implementation of MPRTP and a scheduler

called RTP Adaptation for Multipath Protocols Using Percentage distribution (RAMP-

UP). Results of the tests conducted are discussed in chapter 5 that also evaluates the

performance of MPRTP and shows comparisons with single path scenarios. Finally, we

present our conclusion in chapter 6, focusing on what benefits can be reaped from the

use of MPRTP and what challenges lie ahead. A small discussion about future research

works in this area is also included.

4

Chapter 2

Background

The concept of multihoming is being explored in various research circles and a

number of protocols are being developed for introducing multipath capability in

multihomed clients. The motivation for developing a multipath protocol specifically for

multimedia applications is the marked difference in characteristics between real time

and non-real time data. As obvious from the name given to it, real time data is time

sensitive and is therefore less tolerant to delays than other kinds of data. Fortunately,

when it comes to voice and video, the intolerance towards delay is compensated with a

more tolerant behaviour towards loss and error. Such characteristics set real time data

apart and hence have led to the development of protocols that were specifically designed

for carrying real time traffic, such as RTP.

In the first part of this chapter, we will briefly discuss some multipath protocols

that have been developed for the internet and some of the work that has been done for

transporting real time traffic over multiple paths. In the second part, we discuss RTP

protocol, as it forms the basis of our work.

2.1 Multipath Protocols

Considerable amount of research has been done previously to explore the

concept of multihoming. The developments in multipath solutions, for the internet, vary

and include models based on network, transport or shim layers. This section gives a

brief overview of some such protocols.

5

2.1.1 Multipath Shim Layer Protocols

One possible approach to multihoming is the introduction of a shim layer,

without any significant changes in the network and transport layers. Shim6 and Host

Identity Protocol are examples of such an approach.

Shim6 [1] is a multihoming shim protocol for IPv6. This protocol enables a host

with multiple IPv6 addresses (multiple interfaces) to maintain a state with its peers such

that if the primary interface fails, the connection fails over to the other. Shim6 can

enable a host to spread the load between different interfaces. It works just above the IP

layer and is designed to have minimal impact on the transport and application layers.

The Host Identity Protocol [2] introduces a new namespace for the host machine

known as Host Identifier (HI), which is based on public keys. The transport layer

protocols are bound to HIs instead of IP addresses. Also, the end-point identifiers (or

interface identifiers) are generated from the HI. HIP supports multihoming [3] but there

is little about the simultaneous usage of interfaces in the protoco l specification. Hence,

it basically works for failover scenarios.

2.1.2 Multipath Transport Layer Protocols

Multipath capability within the transport layer can be seen in Stream Control

Transmission Protocol (SCTP) and Multipath TCP (MPTCP). SCTP [4] was originally

designed for transporting PSTN signalling over IP networks. An SCTP association is

capable of failover in case of a network failure, hence providing robustness. However, it

is not capable of using the paths simultaneously. SCTP has also been used fo r

transporting RTP traffic. One research effort shows the partial reliability property of

SCTP is used for retransmitting I-frames in an MPEG-4 video stream [5]. In another

research work, the multihoming property of SCTP is used to provide mobility across

heterogeneous networks for real time services [6].

MPTCP [7] is an extension of TCP that provides multipath capability. It pools

path resources, providing robustness, higher throughput and congestion control with

backward compatibility to TCP. It attains most of the goals we are trying to achieve for

multipath real- time transport; however, TCP is not designed for real time data and

sometimes fails to account for the requirements of such traffic. Congestion control in

6

TCP is provided at the cost of data rate, which is undesirable for real time data. Also,

TCP error control through retransmissions increases latency, making it unsuitable for

real time traffic as well.

2.1.3 Real time data over multiple paths

Multipath diversity for real time traffic and specifically RTP has been explored

before. It has been shown that redundant voice traffic is transmitted over multiple paths

to minimize delay, losses due to late arrival and increase voice quality [10]. The authors

showed that by using multipath communication they can achieve better results than FEC

protected single stream. For video transmissions, works include transmission of even

and odd frames on different paths to minimize bursty loss [11].

A protocol based on partially reliable SCTP, called the Westwood SCTP-PR, for

balanced multihoming of real time traffic has been presented [12]. It uses a bandwidth

aware scheduler for balancing the traffic on multiple paths so that out-of-sequence

packets and jitter can be minimized. When a new packet is to be sent, the scheduler

decides which path would be used to transmit the packet. The scheduler, however, is not

independent of the transport layer protocol.

2.2 Real Time Protocol (RTP)

Some key characteristics of voice and video data set them apart from non-real

time data. These properties also make some of the popular transport protocols like UDP

and TCP less than ideal for transporting such data and have led to the development of

the Real time Transport Protocol (RTP) [8]. Firstly, Voice and video is transmitted as

encoded samples over packet networks. Hence, the traffic is equally spaced in time.

Adjusting the transmission interval to avoid congestion or for the sake of fairness is not

as simple and straight forward as in non-real time data. Secondly, Human senses can

tolerate a certain degree of losses in voice and video. As long as the samples are kept

small, losing a single packet is not noticeable to the human eye or ear. On the other hand

retransmission of lost packets would cause a lot of delay and is therefore not advised for

real time communication. Instead forward error correction schemes are considered

more suitable.

7

Order is important for voice and video data so there should be a sequencing

mechanism to reorder the packets if delivered out of sequence. Furthermore, header

overhead must be kept small in real time communication as voice payload is very small

and a large header would lower the effective throughput. Video packets are large and

require longer times to transmit, which also means that header overhead should be kept

small to increase throughput.

RTP is an end-to-end protocol designed for transporting real time data across

unicast and multicast networks providing sequencing with minimum overhead. It is

independent of the underlying network and transport layers; however, it is designed to

work best with IP/UDP stack. RTP uses Real Time Control Protocol (RTCP) for

monitoring the quality of data delivery. RTP and RTCP do not guarantee quality of

service and do not provide fairness.

RTP is designed to be extensible. RTP packets consist of a fixed RTP header

which may be followed by an extension header which may carry any additional

information required for extensions. It is widely deployed already in real time

applications and has an application level implementation, making it easier to deploy

extensions provided they are backward compatible with traditional RTP. All these

factors contribute to making RTP suitable as the basis of a multipath protocol for real

time communication.

We now briefly present an overview of RTP relevant to MPRTP and video

streaming in a server/client model. Detailed information on RTP and its other use cases

can be found in the RFC.

2.2.1 RTP Header Format

The fixed RTP header is shown in Figure 2.2-1. An extension header may follow

the fixed RTP header. The different fields are explained below.

 Extension bit (X) indicates if there is an extension header included in the packet.

 CSRC Count (CC) is the number of CSRC identifiers that are included in the

header. CSRC is defined later. Only 15 CSRCs can be identified.

8

 Sequence number is a monotonically increasing value assigned to the RTP

packets for the purpose of reordering data and also to detect losses.

 Timestamp indicates the “sampling instant of the first octet in the RTP data

packet”. It is used by the receiver to p lay back the received voice or video.

Furthermore it is used to synchronize audio with video data.

 Synchronization Source (SSRC) is a randomly chosen identifier for the source of

the stream. SSRC identifiers must be unique within a single RTP session.

 Contributing Sources (CSRCs) of the stream that is being carried in the RTP

payload. CSRC identifiers indicated in the list are actually the SSRC of the

individual sources of the streams that are being mixed.

Figure 2.2-1 RTP header format

2.2.2 RTCP Receiver Report

RTP receivers send feedback reports about the quality of the data being received

to the senders in the form of RTCP Receiver Reports (RR). If a receiver is also a sender,

an additional sender’s block is included in the report, which is discussed in the next

section.

The RR reports losses and jitter, and provides information that enables the

sender to calculate RTT. The format of the packet is shown in Figure 2.2-2.

9

Figure 2.2-2 RTCP Receiver Report format

 Packet type (PT) is set to 201 to indicate it is a RR.

 Synchronization Source (SSRC) of the sender of the report.

 SSRC_n is the SSRC of the source whose feedback is included in the report

block.

 Fraction lost is the number of packets lost divided by the number of packets

expected, since the last report was sent. If duplicates were received, the loss may

be negative, in which case the field is set to 0.

 Cumulative number of packets lost is the number of packets lost since the start

of the stream. It is calculated by subtracting the number of packets received from

the number of packets expected. Late packets and duplicates are counted as

packets received and hence this value may be negative.

 Extended highest sequence number (EHSN) consists of two parts. The low 16

bits are the highest sequence number received when the report was sent and the

high 16 bits represent the number of sequence number cycles.

 Interarrival jitter is defined as “the mean deviation (smoothed absolute value) of

the difference D in packet spacing at the receiver compared to the sender for a

10

pair of packets” [8]. The delay D between two packet i and j can be calculated

with the following formula, where R is the arrival time of the packet in RTP

timestamp units and S is the RTP timestamp of the packet

𝐷 𝑖, 𝑗 = 𝑅𝑗 − 𝑆𝑗 − (𝑅𝑖 − 𝑆𝑖)

The jitter J is then calculated using D for two succeeding packets, i and i-1,

on the basis of arrival. These packets may or may not be in sequence.

𝐽 𝑖 = 𝐽 𝑖 − 1 + (𝐷 𝑖 − 1, 𝑖 − 𝐽 𝑖 − 1)/16

 Delay since last SR (DLSR) is the time difference between the reception time of

the last SR received from this sender and sending time of this report.

There may be profile specific extension reports that follow the report blocks in a RR.

2.2.3 RTCP Sender Report

All SRs contain a 20 octet long sender’s block which may be followed by

receiver blocks if the sender is also a receiver. SR with a sender block is shown in

Figure 2.2-3. The fields are explained below.

 NTP timestamp indicates the wall clock time when this report was sent. It is

used by senders in conjunction with timestamps in RRs to calculate RTT.

 RTP timestamp is the same as NTP timestamp but in RTP timestamp units. This

field is used for media synchronization, but requires that the NTP timestamps of

the sender and receiver are synchronized.

 Sender’s packet count indicates the number of packets sent by the sender since

the start of transmission.

 Sender’s payload octet count indicates the number of octets sent by the sender

since the start of transmission.

11

Figure 2.2-3 RTCP Sender Report format

2.2.4 Frequency of RTCP reports

RTP specification recommends using a minimum RTCP interval of 5 seconds,

and a wait time of at least 2.5 seconds before sending the first report. The actual interval

is calculated dynamically using “session bandwidth” to ensure scalability with the

number of participants. So the more the participants, the less frequently the reports are

sent in order to avoid flooding the network. Session bandwidth is the aggregate

bandwidth, including IP and UDP header overhead, that is utilized by all the

participants of a session, and is provided by the application. The application may

determine this value based on the bandwidth reserved by the network for the session, or

the type of codec and session. All the participants must use the same value of session

bandwidth for RTCP transmission interval calculations. RTP specification recommends

that the control traffic is kept at 5% of the session bandwidth. In point-to-point

scenarios such as the client/server case, each member gets half of this share.

12

2.2.5 Jitter Buffer and Playout Delay

In RTP, the receiver must compensate for any variation in the clock rates of the

sender and the receiver, network delays and out of order packets. An RTP receiver

maintains an RTP jitter buffer to store the data for reordering, and removing duplicate

packets as they are received. For each frame a playout time is calculated after

compensating for jitter and clock skew. RTP does not provide any algorithms or

approach for designing the jitter buffer or for calculating the playout time.

The playout delay is a compromise between latency and quality in an RTP

stream. In non-real time video streaming, some level of latency is acceptable, depending

on the application and the user preference. When the first RTP packet is received, the

receiver has no knowledge of the jitter or clock skew values. The receiver would

convert the timestamp of the received packet to a time in terms of the receiver clock.

This value is the base time, which will be used for calculating playout time of all

subsequent RTP packets. Clock skew is the difference in the clock rate of the receiver

and the sender, however, while calculating skew on the receiver’s side it naturally

includes the effects of network jitter. Various algorithms exist for the calculation of

skew. A windowed low point averaging technique [21] is used by Gstreamer[22]; a

popular multimedia framework. If Tri is the time at which packet i is received at the

receiver and Tsi is the time at the sender then, the drift induced by delay and added noise

(jitter) can be calculated as

Drift = (Tri-Tr0) – (Tsi-Ts0)

The receiver maintains a window of delay values observed and calculates skew

based on the minimum value in the window, DriftWmin.

Skew = (DriftWmin + (124 x Skew)) / 125

Gstreamer uses a 2 second window or 512 data points, whichever is larger. It

uses a weighting factor of 125 for calculating the average. Using the minimum delay

values would ensure that the skew calculations are not affected by a temporary queuing

delay experienced by a few packets.

13

2.3 Summary

Various research groups have realized the importance of multipath protocols and

different protocols have been proposed. These protocols range from shim layer solutions

such as HIP and Shim6; to transport layer protocols such as MPTCP. Some research has

been focused on real time data over multiple paths, however, there is little progress in

the field of a multipath protocol for real time data. We feel that such a protocol holds

significance, given the marked difference in properties of real time traffic.

RTP is a protocol designed for transporting real time traffic over unicast and

multicast networks, which currently deployed in the Internet. RTP typically runs over

UDP/IP but is independent of the lower layers. RTP supports extensibility and can be

utilized as the basis for developing multipath capabilities for rea l time traffic. Proper

extensions need to be developed for this purpose, which are discussed in the next

chapter.

14

Chapter 3

Multipath RTP

In this chapter, we discuss Multipath RTP as an extension of RTP protocol.

MPRTP adds multipath capability to RTP by allowing senders to split a single stream of

data over multiple paths. It would schedule the packets on the different paths based on

the network characteristics gathered using Multipath RTCP (MPRTCP) reports. Like

RTP/RTCP, MPRTP/MPRTCP is independent of the transport layer; however, it is

designed to work well with UDP/IP.

3.1 Motivation

Introducing multipath capability for multihomed clients may lead to increased

throughput and higher resilience, directly contributing to higher quality of service in

multimedia applications. Hence multimedia communication can greatly benefit from a

multipath protocol designed to enhance real time transport. MPRTP is one such

solution.

MPRTP is designed to allow simultaneously utilizing multiple paths between

end points without any dependency on the lower layers. From an implementation

perspective, it works on the application layer. Hence, it requires no change in kernel

level implementations or network level infrastructure. This makes MPRTP a flexible

solution for multipath scenarios of real time communication.

The primary use case of MPRTP is for streaming high-bitrate multimedia

content, such as in the case of IPTV. In such a case, increased throughput can be

provided and bottlenecks can be avoided if either or both of the endpoints are

multihomed. Furthermore, MPRTP can be used for load balancing of the multiple paths.

Another use case of MPRTP is in Voice over IP (VoIP) applications, where it help s

15

increase resilience. The capability to recognize and use multiple paths enables MPRTP

capable hosts to seamlessly switch from one path to another in case of outage or

network problems. Also, if the paths are lossy, multiple paths can be used for sending

redundant data.

3.2 Goals and Requirements

MPRTP applications are required to meet the following characteristics.

 Resilience can be achieved if the protocol is capable of fa ilover. In case one of

the paths goes down; it should gracefully shift to the other without disrupting

communication. Packet losses can be minimized by sending redundant packets

on other paths.

 The protocol should be able to achieve a higher throughput than the individual

throughput of any of the available paths.

 The protocol should be able to work in today’s Internet environment; it should

be able to traverse middle boxes such as NATs and firewalls. This can be

achieved if the subflows in the multipath protocol appear as individual RTP

flows to the middle boxes.

 Also, the new protocol should be backward compatible with RTP applications.

Multipath capability should be available as an option, and an MPRTP

application should be able to communicate with legacy RTP applications.

Unlike non-real time traffic, throughput is not the only parameter we are

interested in when it comes to voice or video streaming. In addition to the above,

MPRTP implementations would give better performance if the following rules are also

met in the design.

 Data travelling on different paths will face different network delays. A good

multipath protocol for real time traffic should be able to minimize the jitter

experienced by the receiver.

 A late packet can be equivalent to a lost packet in real time scenarios; hence not

only do we need to maximize throughput, but we also need to make sure that

16

when using paths with different characteristics, the fraction of out-of-sequence

packets is minimal.

3.3 Architecture

An MPRTP application uses multiple paths to send and/or receive data and

hence must perform a dual function; transport data across each path individually as well

as maintain and synchronize the multiple paths. A layer view of MPRTP is shown in

Figure 3.3-1. Like RTP, MPRTP is more suited to work with UDP but should be able to

operate other transport protocols as well. It may create conflicts when used with

multipath transport protocols.

Figure 3.3-1 MPRTP Layer Model

The MPRTP layer is responsible for managing the available paths. It is aware of

new paths becoming available or old ones failing, and a maintains path characteristics

gathered through MPRTCP reports. It also initiates and records the results for

connectivity checks to see the health of a particular path between peers. MPRTP senders

split a single RTP stream over the multiple paths available, a process referred to as

packet scheduling. The packets on any particular path constitute a subflow. MPRTP

provides unique identifiers and packet sequencing for each subflow. Each subflow is

represented in Figure 3.3-1 as an individual RTP flow and this is how it will appear to

the network as well. The MPRTP layer acts common to all the subflows and ensures

that the MPRTP session appears as a single RTP session to legacy applications. In

receivers, the MPRTP layer recombines and reorders the packets coming from the

multiple subflows to form a single stream for the application again. An example case

with three subflows is illustrated in Figure 3.3-2.

17

Figure 3.3-2 Example of an MPRTP scenario in the Internet

3.4 Signalling

RTP flows do not use in-band signaling and are hence often used in conjunction

with other signaling protocols such as HTTP[15], RTSP[13] and SIP[14]. MPRTP also

requires an out-of-band mechanism for session setup. MPRTP may utilize Interactive

Connectivity Establishment (ICE)[20] for interface discovery and connectivity checks,

which can be done prior to the session setup or later on. Interface advertisements and

MPRTP path information is exchanged using in-band signaling through RTP and RTCP

header extension [21] for MPRTP. The MPRTP sender may choose to increase or

decrease the number of paths in use or change the packet scheduling mechanisms based

on this information.

It is noteworthy that starting with a single path ensures backward compatibility

with RTP. MPRTP is implemented as an RTP extension and the additional information

is carried in RTP header extensions. In a server/client scenario, if a client is not capable

of MPRTP, it would simply ignore the MPRTP extensions in the packets received from

the server. The server would recognize MPRTP silence from the client as multipath

incapability and would continue using a single path for the entire session.

3.5 MPRTP Call Flow

MPRTP needs to gather information about the available paths before it can use

them effectively. If ICE interface discovery and connectivity checks are completed prior

18

to a call setup and MPRTP capability is communicated via the RTSP/SIP setup

messages, it is possible for an MPRTP session to begin transmitting on all available

paths as soon as the session is established. If this is not the case, and all interfaces are

not known, connectivity checks are not completed or MPRTP capability of the other end

is not known, a session should begin with a single stream over a single path. In

accordance with the objective of this work, we discuss the call flow for a server/client

scenario for video streaming as shown in Figure 3.5-1. A1 and A2 are the interfaces of

the server and B1 and B2 are interfaces of the client. A1-B1 and A2-B2 are the two

available paths. The steps are explained below

i. The session is established using RTSP or SIP over path A1-B1.

ii. Upon successful session setup, the server begins to transmit the video

stream to the client via path A1-B1. It includes the MPRTP extension

header in the stream to show MPRTP capability to the client.

iii. The client discovers a second interface B2. Interface discovery may be

done using ICE. The client sends an interface advertisement to the server

including address and ports for both B1 and B2.

iv. The server responds with its own interface advertisement for A1 and A2.

v. Connectivity checks between A2 and B2 are performed using either

MPRTP or another protocol such as ICE.

vi. If the connectivity checks are successful, the server splits the stream to

transmit on both paths A1-B1 and A2-B2.

vii. The client reorders and recombines the data received on the two paths

before handing it over to the application.

19

3.6 MPRTP Message Formats

MPRTP uses RTP/RTCP header extensions for sending MPRTP-specific

information to peers. As already discussed, these extensions are simply ignored by peers

that do not have MPRTP capabilities. In this section, we describe the basic header

extensions used by MPRTP during a session. Details of connectivity checks are not

included in the scope of the thesis.

3.6.1 MPRTP Subflow Header

The MPRTP RTP extension header can be a subflow header or a connectivity

check. If required, other message types can also be included in the protocol

Figure 3.5-1 Example of MPRTP streaming in a server/client scenario

Client Server

A1 B1 B2
Session Setup

Streaming started A1->B1

Interface Advertisement (B1, B2)

Connectivity Checks

*1 - Stream data is scheduled to a single path A1-B1

*2 - Interface B2 is discovered

*3 - Stream data is scheduled to two path A1-B1 and A2-B2

*4 - Data received on B1 and B2 is recombined to get the s tream

Interface Advertisement (A1, A2)

A2

*1

*3

*2

 *4

Streaming started A2->B2

20

specification. A subflow header is shown highlighted in Figure 3.6-1. The fields are

explained below.

Figure 3.6-1 MPRTP subflow header

 H-Ext ID : The field indicates the type of MPRTP message and has the value

0x00 in the case of subflow header. If this field has the value 0x01, it means the

message is a connectivity check.

 Length : Indicates the number of bytes in the extension header excluding H-Ext

ID and the length field itself. It has value 0x06 in case of subflow headers.

 Subflow ID : Each subflow has a unique identifier which is carried in this field.

 Flow specific sequence number : A strictly monotonically increasing sequence

number assigned to each packet in the subflow.

3.6.2 MPRTCP Sender and Receiver Reports

The reports sent on a particular path will only contain subflow-specific

information and hence are referred to as Subflow-specific SR (SSR), Subflow-specific

RR (SRR). This ensures that the sender and receiver have information about the health

and performance of each path and not just an overall value. A different approach would

be to concatenate reports of various paths into a single packet and sending on all or any

one single path. Concatenating reports of various subflows into a single packet would

lead to larger packets, which if lost, would result in greater information loss in

21

comparison to smaller packets of flow-specific reports. Furthermore, for RTT

measurements, we have to send reports on all available paths. Since a subflow’s report

is only relevant as long as the path is active, it is acceptable to only send it along the

same path rather than on any other path.

Subflow-specific extension reports, if any, are appended to the SRR. The fields

within SRR and SSR are the same as RTCP RR and SR respectively, making them

backward compatible as well as easy to implement. The message format of a MPRTCP

report is shown in Figure 3.6-2.

Figure 3.6-2 MPRTCP Sender and Receiver Reports

22

3.7 Frequency of MPRTCP reports

Scheduling depends on the information gathered by the sender about the path

characteristics. This information is obtained using MPRTCP RRs that are received for

each path. The frequency of these reports is a key factor and may directly contribute to

the accuracy of the information gathered and subsequently, the effectiveness of the

scheduling.

RTCP reports are only used for feedback and reporting purposes, and do not

affect the quality of the stream. Hence, keeping a minimum interval of 5 seconds is

understandable. In case of MPRTCP, however, we need to consider the following

aspects before defining a minimum transmission interval for reports.

 In the beginning, when the sender does not know anything about the path

characteristics, frequent reports would enable the sender to adjust the flow on

each path more quickly and avoid sending packets on lossy or congested paths.

Once the characteristics of the paths are known, less frequent reports would be

acceptable.

 Each time new RRs are received, the sender must recalculate path properties and

if required adjust the percentage of traffic on each path. Also, both sender and

receiver would require cycles for creating and sending the reports. The higher

the frequency of the reports, the more computations needed.

 If the frequency of the reports is so high that the number of packets received

between two RRs is just 2 or 3, fields such as fraction lost may provide

misleading information to the sender about path quality. Also, a short- lived

deterioration in the network may unnecessarily cause the sender to switch traffic

from the effected path.

3.8 Jitter Buffer and Skew Calculations

The role of a jitter buffer becomes exceedingly important in MPRTP. Packets

travelling on different paths will experience different network delays and hence the

23

extent of out-of-order delivery and jitter would be increased in MPRTP in comparison

to the single path flows of RTP. This also increases the significance of playout delay

calculations when adaptive playout is in use.

Figure 3.8-1Skew calculations based on overall maximum of per path skew values

While calculating overall skew observed by the packets flowing over multiple

paths, skew on each path must be considered. A suitable approach may be to use a

windowed low-point averaging for calculating the skew value for each path separately

at first and then using these values to calculate the overall skew. Our tests revealed that

using a windowed high-point average for calculating the overall skew from per-path

skew values yields desired results when multiple paths with different network delays are

used. The overall skew should be used for playout delay calculations of all the packets

irrespective of the path taken to ensure that packets travelling on a slower path are not

discarded.

Figure 3.8-1 shows the results of such a scheme when three paths are used with

delay values of 50ms and 200ms on path1 and path3 respectively. The delay on path3 is

100ms initially, but changes to 300ms at about 55 seconds. We see that the skew value

remains at 150ms for the next 10 seconds. This is because the algorithm uses a

24

windowed low-point average for each path, and there will still be values of the previous

shorter delay in the window. This approach ensures that if only a few packets are

delayed, the skew value is not affected by it. The overall skew value starts increasing

slowly once the older delay values are cleared. It reaches 250ms after approximately

another 10 seconds have passed. The gradual increase is because we use averaging

instead of absolute values in order to avoid sudden changes in the skew.

3.9 Summary

MPRTP is a protocol designed to introduce multipath capability to real time

communication with the aim to improve quality of service. It aims on achieving higher

throughput by resource pooling if multiple paths are available between two endpoints. It

should also provide a higher level of resilience and lower packet losses in comparison to

RTP under similar conditions. MPRTP is designed to be network compatible as well as

backward compatible with RTP applications.

An MPRTP sender is capable of splitting a single RTP stream over the available

paths, while an MPRTP receiver reorders and recombines it before handing it over to

the application. Packets travelling over different paths are more prone to out-of-order

delivery and higher values of jitter than those travelling over a single path, and hence

MPRTP receivers may require higher buffering delays for smooth playout than RTP

receivers. Possible use cases of MPRTP include high bitrate streaming scenarios and

voice/video calls. MPRTP can provide higher throughput for the former case and

redundancy through fallback for the latter.

25

Chapter 4

Implementation: A Sample Scheduler

Observing the actual behavior of RTP in the presence of multiple paths is of

great significance for refining the MPRTP protocol towards maturity. Since, one of the

important consequences of multiple paths is the additional throughput, video streaming

applications demanding higher bandwidth were chosen as the starting point for the

experimentation.

We developed a MPRTP sender based on our sample scheduler called RAMP-

UP (RTP Adaptation for Multiple Paths Using Percentage distribution). RAMP-UP is

designed specifically for video streaming from a server to a client. It focuses on

scheduling of packets over the multiple available paths in order to achieve higher

efficiency. We also implemented a simple MPRTP receiver with buffering

considerations for MPRTP. It does not, as yet, cover aspects of interface discovery nor

connectivity checks.

4.1 Design Decisions

Regardless of how efficient the scheduling of an MPRTP sender is, if a single

lossless path is available with sufficient capacity, using a single RTP flow on this path

would outperform using multiple subflows on multiple paths. The reason for this is that

the packets on a single path suffer similar network effects and would lead to a higher

level of order and lower values of jitter. On the other hand, sending packets over

different paths with varying network characteristics, would, in most cases, lead to out-

of-order delivery and high jitter values. Also, extra computations and memory would be

required for managing the paths, scheduling at the sender and reordering at the receiver.

The header overhead for MPRTP would also be introduced. Nevertheless, the use of

26

multiple paths would still trump a single path if, for instance, none of the paths available

provide sufficient throughput. Furthermore, the reliability and redundancy factor is also

added when more than one path is used.

Our design assumes that a single path cannot meet the bandwidth or reliability

requirements for the traffic, and the use of multiple paths is necessary. This assumption

is of little consequence, since MPRTP can be controlled to some extent by the

application, and it may be possible for the application to assign a preferred path in the

scenario where such a path exists. For now, RAMP-UP does not discover paths nor does

it perform connectivity checks or interface advertisements. The maximum number of

paths to be used, along with the IP and port combinations must be fed manually to both

sender and receiver. This state can be achieved as a result of ICE exchange in a real

scenario.

RAMP-UP focuses on avoiding congested or lossy paths, however it does not

aim to load balance the paths. As described in Chapter 2, RTP is not fair because of the

periodic nature of real time data. Although in the presence of multiple paths, an element

of fairness may be added to the protocol by shifting load to other paths, but we leave

this problem to be looked into as part of future work.

There is no distinction between congestion losses and other types of losses in the

design. The assumption is that a path exhibiting packet loss is experiencing congestion.

This in turn implies that the scheduler may act unpredictably over lossy paths, where the

losses are error- induced.

Finally, since MPRTP leads to out of order delivery when paths have different

latencies, there should be a method of buffering to compensate for this. The buffering

can be done either at the sender or the receiver end. When done at the sender end, the

sender can send future packets on slower paths. However, this approach would require

foresight and would only be successful if the sender has sufficient information about the

paths, and the path characteristics are stable. Sender-side buffering may reduce out of

order delivery and jitter, but would not be able to eliminate the need for receiver-side

buffering completely, given the unpredictable nature of packet networks. In our

solution, we used buffering at the receiver with a fixed playout delay as well as an

adaptable skew factor. This design is beneficial because the receiver can more quickly

27

adapt to changing path characteristics as it gets the information first hand, and unlike the

sender does not have to wait for the RTCP RR. We describe the buffering in more detail

in the next section.

Development was done using C/C++ application- level programming and uses

threads for sending and receiving data on each path. A parent thread is responsible for

scheduling packets in the sender and recombining the sub-streams in the receiver. The

sender implements only MPRTP and does not have an in-built encoder or decoder.

4.2 MPRTP Receiver

An MPRTP receiver is responsible for recombining the data received on the

various paths to produce a single stream of packets for the application. In our

implementation, we use a shared jitter buffer that not only removes jitter but also serves

to recombine the sub streams. A configurable playout delay is included to ensure

smooth playback. As discussed already in the previous section, MPRTP packets may

suffer from higher jitter and require greater reordering at the receiver, and hence would

probably require larger playout delays in comparison to RTP receivers.

Figure 4.2-1 shows a graphic representation of the jitter buffer when two paths

are in use. Each packet is inserted into the jitter buffer as soon as it arrives, unless the

playout time for the received packet has already expired, in which case it is considered

late and is discarded. All received packets of a frame are handed over to the application

at playout time and not before.

Figure 4.2-1 MPRTP receiver jitter buffer for reordering

28

4.3 MPRTP Sender

The MPRTP sender is designed to distribute the data on the paths available

between the receiver and itself. It uses the MPRTCP reports to determine the

characteristics of each path and accordingly assigns a percentage of total traffic to be

sent on that path. Using a percentage distribution technique has two advantages over a

per-packet decision approach. Firstly, it eliminates flapping, which means the traffic is

shifted continuously from one path to the other. This happens if the sending bitrate is

higher than the available capacity and increasing load on any of the paths forces it to go

into congestion, causing the sender to constantly switch routes to avoid losses.

Secondly, if the bitrate of the stream is increased or decreased, the change would be

equally distributed on all paths.

RAMP-UP sender assigns equal percentages to all available paths at startup; for

two paths it would assign 50% to each. Every time a new packet arrives, it is assigned to

a particular path depending on the percentage distribution. All packets from a single

frame are sent on the same path. Since the sender is not capable of reducing the video

bitrate, if the available bandwidth is not sufficient for the s tream, losses cannot be

avoided.

Figure 4.3-1 RAMP-UP Sender's queue

The traffic percentage controls the number of bytes sent on the path and not the

number of packets. We use a probabilistic approach based on random number

generation, which adds more freedom in allocating percentage shares. This approach

also results in even offered load for different sized packets. The effective percentage of

29

each path is adapted according to the amount of traffic that has already been sent on that

path. The path to be used is decided whenever a new packet arrives. Given the following

parameters for a path Z

p1 = ratio allotted to the path

b = Bytes already sent on the path

t = total bytes received (including the packet that is yet to be transmitted)

p2 = b/t

Then the effective percentage p of path Z is p1 minus p2; and the path will be selected

for transmission if the random number r is less than or equal to p, where r lies between

0 and 1.

4.4 Scheduling Algorithm

The RAMP-UP scheduling algorithm is based on the assumptions discussed in

section 4.1 and is designed for video streaming applications where more than one path

exists between the server and the client. It is currently only capable of handling unicast

applications, though the design may be extended to multicast. The algorithm uses a non-

aggressive approach, which implies that we do not put more traffic on a path unless

necessary. This in turn implies that the full capacity of certain paths may never be

known. Hence, the algorithm only distributes load and does not regulate it to provide

congestion control.

4.4.1 Bitrate Measurements

The scheduler uses the RRs to calculate path bitrates which it uses for assigning

percentages. When the sender receives the i-th RR on a path j, it calculates the

instantaneous bitrate Bi,j for that path, using the following formula

Bi ,j =
 HSNi−1 − HSNi × (1 − Li) × Si

ti − ti−1

30

where HSN is the highest sequence number and L is the fractional loss observed in the

RR. The time of reception of RR is denoted by t and S is the average size of the packet

during the interval ti-1 to ti. Figure 4.4-1 illustrates the concept graphically.

Figure 4.4-1 Measurements for calculating bitrates

 Based on the instantaneous bitrate the scheduler calculates two values that it

uses for actually calculating the percentage distribution. These are listed below.

 The Tested bitrate TBi,j is the highest bitrate observed on a path, after taking into

account the losses. It is calculated using the following formula, where 0 ≤ α ≤ 1.

TBj =
TBj if Li = 0, Bi ,j < TBj

αTBj + 1 − α Bi ,j else

 Congested bitrate CBi,j is calculated when there are losses on the path, and low

bitrate values are being observed. This value is used in conjunction with the

congestion indicator CI and the congestion time Ctime. CI is an integral value

indicating the likelihood that a path is in congestion, and a path is considered

congested if CI is equal to CIMAX. CI is incremented by 1 when losses are

observed. Ctime is the absolute time when CI was last modified or when losses

were detected, whichever is more recent.

Figure 4.4-2 RAMP-UP scheduler: Flowchart for calculating bitratesillustrates the

principle graphically.

RTCP

RTP

31

Figure 4.4-2 RAMP-UP scheduler: Flowchart for calculating bitrates

4.4.2 Calculating Percentage Distribution

The scheduler will reassign percentages to each path based on the new set of

bitrates. The formula used by the scheduler for this calculation depends on the number

of routes that are congested or lossy. We consider a path with CI = CIMAX congested,

however, if the CI has a value greater than 0, but has not yet reached CIMAX, we

New Bi calculated

Li = 0 TBi< Bi

TBi= αTBi + (1-α)Bi

 CI > 0

Ctime

older than
CI*TO

Decrement CI;
Ctime = Time now;

TBi= αTBi + (1-α)Bi

CBi= αCBi + (1-α)Bi

Ctime = Time now;

CI <
CIMax

Increment CI;

CI =
CIMax

Set Congestion
Alert

Y

N

Y

Y
Y

Y

Y

CBi< Bi

CBi= αCBi + (1-α)Bi

Y

32

declare it lossy but not yet congested. This is to allow room for temporary losses to

clear on their own. If the losses are being observed continuously, and CI reaches

CIMAX only then would the scheduler drastically decrease traffic on the route.

If none of the paths are congested then the assigned percentage is the ratio of the

path’s TB to the total TB of all the paths combined. When all paths are congested the

assigned percentage is the ratio of a path’s CB to the total CB of all the paths combined.

If c is the number of paths that are currently congested, l are the number of lossy paths

and n is the total number of paths available then the percentage pj that will be assigned

to path j is calculated as follows.

if c = 0 , pj =
TBj

 TBi
n
i=0

if c = n, pj =
CBj

 CBi
n
i=0

If some paths are congested, while others are not i.e c < n, we use a stepwise

approach.

STEP I : Assign percentages to the congested routes

For all j such that 𝐶𝐼𝑗 = 𝐶𝐼𝑚𝑎𝑥 and 0 ≤ β ≤ 1.

 pj = Min
TBj

 TBi
n
i=0

 ,
βCBj

SBi

The assigned percentage is the minimum of two terms. The first term is simply the ratio

of the path’s TB to the total TB. The second term is based on the congested bitrate of the

path, which is the bitrate the path exhibits during the congestion. The denominator is the

sending bitrate 𝑆𝐵𝑖 , which is the current average bitrate of the stream updated after

every second. Assigning ratio CBj/SBi on the congested path j would ensure that the

bitrate on the path j is equal to CBj. However, this holds true only if SBi remains

constant. For variable bitrate, we needed to lower the assigned ratio further to keep the

traffic within bounds of the congested bitrate. Also, since we have uncongested paths,

we prefer to keep the ratio of traffic on the congested paths low. Finally, if the ratio of

the path’s TB to the total available TB is lower than the second term, then we have

33

enough bitrate available on other paths and we don’t need to put extra traffic on the

congested path.

STEP II: If there is at least one path that is neither lossy nor congested then assign

percentages to the lossy routes

For all j such that 0 < 𝐶𝐼j < 𝐶𝐼𝑚𝑎𝑥 and 0 ≤ 𝛾 ≤ 1.

pj = Min
TBj

 TBi
n
i=0

 ,
γCBj

SBi

This formula is similar to the one used in step I, with the exception of the variable γ

instead of β. The value of γ can be higher or equal to β, so that lesser traffic is routed

towards congested routes in comparison to lossy ones.

STEP III : Assign percentages to the remaining routes

For all j such that pj has still not been assigned, these would be the lossy paths if there is

no path that is neither lossy nor congested.

pj =
TBj

 TBunassigned

 × (1 − AP)

where AP is the assigned percentage i.e. the sum of the percentages that has been

assigned in Step 1 and 2. In this step we assign the percentage remaining after step I and

II on the remaining paths. Hence more traffic is shifted to the paths with no losses, but

even the paths with losses still get assigned some traffic.

Figure 4.4-3 illustrates the complete principle of percentage distribution with the

help of a flowchart.

34

4.4.3 Frequency of Redistribution

Calculating percentage distribution and redistributing traffic, takes up processing

and time. Hence, it is important to find an optimum interval for this action to take place.

A few factors that are of significance in this matter are listed below

Recalcu late

Percentages

c = n

c + l

= 0

𝒑𝒋 =
𝑪𝑩𝒋

 𝑪𝑩𝒊
𝒏
𝒊=𝟎

For each path j

CIj =

CIMax

c+ l < n

𝒑𝒋 = 𝑴𝒊𝒏
𝑻𝑩𝒋

 𝑻𝑩𝒊
𝒏
𝒊=𝟎

 ,
𝜷𝑪𝑩𝒋

𝑺𝑩𝒊

and AP += pj;

𝒑𝒋 =
𝑻𝑩𝒋

 𝑻𝑩𝒖𝒏𝒂𝒔𝒔𝒊𝒈𝒏𝒆𝒅

 × (𝟏 − 𝑨𝑷)

For all j If 𝒑𝒋 is not assigned

𝒑𝒋 =
𝑻𝑩𝒋

 𝑻𝑩𝒊
𝒏
𝒊=𝟎

0< CIj <

CIMax

Y

N

Y

N

Y
Y

Y

𝒑𝒋 = 𝑴𝒊𝒏
𝑻𝑩𝒋

 𝑻𝑩𝒊
𝒏
𝒊=𝟎

 ,
𝜸𝑪𝑩𝒋

𝑺𝑩𝒊

and AP += pj;

Figure 4.4-3 RAMP-UP scheduler: Flowchart for calculating percentage distribution

35

 In the beginning, the scheduler does not have any information about the path

properties and distributes the traffic equally on all paths which may not always

be an ideal distribution. It would be better to redistribute the traffic in a better

manner, as soon as some information is received about the paths.

 When there are losses on a path, changing the distribution quickly would prevent

high loss rates. However, the losses could be a temporary condition, and reacting

too quickly might result in an unnecessary shift of traffic.

 When the paths are stable and enough information is known about them, the

traffic distribution does not need to be revised too often.

In RAMP-UP, we recalculate percentages on the expiry of the reschedule

interval, r_int, defined in seconds. It is calculated by the following formula

r_int = r_rec x (rand + 0.5)

where R_INT_MIN ≤ r_rec ≤ R_INT_MAX for normal operation and is called

the reschedule recovery. The randomization is to prevent synchronized rescheduling of

multiple senders with common paths. r_rec is set to R_INT_MIN at startup. It is

incremented with each recalculation until it reaches R_INT_MAX. Deviation from

normal operation is when there is a congestion alert and the r_rec is set to zero so that

the scheduler can redistribute traffic without any further delay. R_INT_MAX and

R_INT_MIN can be set based on the characteristics of the available networks. For

instance, if the application uses paths that have rapidly changing characteristic such as

3G or GPRS, then the reassignment should be scheduled quickly and R_INT_MAX

should be low. However, networks that are usually stable in terms of bitrate can use

higher values of R_INT_MAX. R_INT_MIN should be large enough that the

rescheduling occurs after at least one set of MPRTCP RRs have been received and the

information regarding path properties has been updated.

4.5 Summary

RAMP-UP is a basic first attempt to building a scheduler for a MPRTP sender.

The purpose of designing such an application was to be able to experiment with MPRTP

36

in a multipath environment. The results of such experiments may prove to be beneficial

in the development and subsequent deployment of the protocol.

The RAMP-UP sender uses RTCP RRs to estimate the bitrate on each of the

available paths and assigns traffic percentage to the paths based on these values. The

receiver buffers the incoming packets, reorders and recombines the sub streams on the

different paths and hands it to the application.

Our implementation of MPRTP sender and receiver is developed for video

streaming scenarios; however, it may be extended at a later point to include other use

cases of MPRTP. For the time being, the available paths are fed manually in the form of

IPv4 addresses and ports. Path discovery through ICE or other means may also be

incorporated at a later stage.

37

Chapter 5

Testing and Results

In this chapter, we evaluate the performance of MPRTP through RAMP-UP.

Our evaluation includes experiments designed specifically to test our own algorithm

design, as well as those that effectively simulate real life cases in which MPRTP may

prove to be helpful for multihomed devices such as smart phones and tablets with fixed

and wireless connections. In order to effectively evaluate performance with respect to

particular path characteristics, we are sometimes forced to make simplistic assumptions

which may not be present in real networks.

5.1 Evaluation Environment

For the evaluation, we set up a virtual environment consisting of a sender and a

receiver, having three interfaces each. Three paths are available between the sender and

the receiver via virtual routers as shown in Figure 5.1-1. All virtual machines run on the

same physical machine.

Network characteristics were emulated on the paths using NetEm [27]. Various

tests were conducted to observe the performance of MPRTP in general and RAMP-UP

under different network conditions. Path latency, bandwidth and losses were emulated

during the testing.

The RAMP-UP sender reads RTP packets saved in an rtpdump file created using

rtp tools [19]; it adds the MPRTP header to the packets and sends them across the

network. The MPRTP receiver reorders the received packets and writes them to an

rtpdump file which is later used for analysis. Furthermore, other statistical data such as

time of arrival of packets, the path taken, observed bitrates and losses are measured and

38

recorded at the receiver as well. We chose to use H.264 constant bitrate (CBR) videos

for the testing.

Figure 5.1-1 Virtual environment for testing

5.2 Test parameters

The “Foreman” video sequence [28] is used for the testing. It is pre-encoded

using Nokia’s H.264 encoder [21] at an average media rate of 1 Mbps, 30 FPS and

GOP=16 and the video sequence is 265 seconds long. The instantaneous bitrate is

shown in Figure 5.2-1.

Figure 5.2-1 Instantaneous bitrate of the test video stream

39

The values assigned to the different parameters of the scheduler during the

testing are shown in Table 5.2-1. The values were chosen after careful consideration to

the evaluation environment and were tweaked to match our needs after some basic

experimentation. Experiments to study the effects of each variable under different test

scenarios was not done, instead the focus was kept on evaluating the algorithm as a

whole under different path characteristics.

Parameter Value

α 0.99

β 0.5

γ 0.75

CIMAX 3

R_INT_MIN 3 seconds

R_INT_MAX 10 seconds

Table 5.2-1 Test parameter values

In our testing, we use a minimum interval of 500ms for sending MPRTCP

reports instead of 5 seconds. Since, we are using high bitrate streams; the ratio of

MPRTCP reports is still within 5% of the session bandwidth. A more adaptive approach

for calculating this interval may also be used.

5.3 Test Results

In this section we evaluate the performance of our algorithm through metrics

such as Peak Signal-to-Noise Ratio (PSNR) and percentage loss rate. We also observe

the traffic distribution assigned by the scheduler over the course of the time. In order to

maintain objectivity for the reader and to avoid discussing cases that yield similar

conclusions, we present here the results of only some of our experiments.

5.3.1 Paths with similar properties

In the first scenario, we used 2Mbps paths with 50ms path delay values. We

repeated the experiments with different loss rates on the paths. Table 5.3-1 shows the

results for lossless paths. It shows that the PSNR value remains the same regardless of

the number of paths used. Table 5.3-2 and Table 5.3-3 show results when loss rates

40

were introduced on the paths. It can be seen that similar PSNR values were observed for

single and multiple paths.

Table 5.3-1 PSNR comparison; when paths have equal capacity & delay and no losses

Scenario PSNR Percentage

packet loss All paths have 0% losses Average StdDev

Single Path 48.4274 0.0000 0.0000

2 paths using RAMP-UP 48.4274 0.0000 0.0000

3paths using RAMP-UP 48.4274 0.0000 0.0000

2paths using static distribution 48.4274 0.0000 0.0000

3paths using static distribution 48.4274 0.0000 0.0000

Table 5.3-2 PSNR comparison; when paths have equal capacity & delay and 0.5% losses

Scenario PSNR Percentage

packet loss All paths have 0.5% losses Average StdDev

Single Path 41.8868 0.5059 0.4873

2 paths using RAMP-UP 40.3142 0.5763 0.5051

3paths using RAMP-UP 40.4063 0.8492 0.4944

2paths using static distribution 40.9122 0.1908 0.4916

3paths using static distribution 40.4834 0.7529 0.4852

Table 5.3-3 PSNR comparison; when paths have equal capacity & delay and 1% losses

Scenario PSNR Percentage

packet loss All paths have 1% losses Average StdDev

Single Path 36.1726 0.7050 1.0059

2 paths using RAMP-UP 36.5637 1.0059 0.9391

3paths using RAMP-UP 36.2120 0.5717 0.9952

2paths using static distribution 36.4890 0.8504 1.0165

3paths using static distribution 36.2855 0.4991 1.0797

41

Figure 5.3-1 RAMP-UP scheduler's percentage distribution over lossy paths

Since RAMP-UP, by design, interprets losses as indication for congestion, we

did not expect it to act ideally during these experiments. As expected, the behavior of

the scheduler is not uniform when the paths have losses. We explain in the previous

chapter that the scheduler declares a path congested if the losses are observed close

together in time. When the loss rate is low, the losses were spread apart in time, and

hence the scheduler does not drastically lower the traffic share of any path. Figure 5.3-1

shows the results of an experiment where losses were 0.5% and the scheduler did not

declare any path congested. The scheduler maintains an almost uniform distribution of

traffic over all paths throughout the course of the experiment. The sending bitrate is the

instantaneous bitrate of the sent stream as measured by the sender.

5.3.2 Paths with different latencies

In our second set of experiments, we use paths that have the same bandwidth but

different latencies. The difference in latencies would result in out-of-order packets,

which are put in order using the jitter buffer.

Table 5.3-4 shows results of when we use a playout delay of 1 second at the

receiver end. As long as the playout delay is greater than the difference between the

42

latencies, the received packets can be reordered on reception. In practice, some

processing time is needed at the receiver end, which must also be compensated in the

playout delay along with the path latencies.

Table 5.3-4 PSNR comparisons; when paths have different latencies

Scenario PSNR

All paths have 1Mbps capacity, Latency for

path1 50ms, path2 100ms, path3 200ms Average StdDev

Single path (all paths) 48.4274 0.0000

2 paths using RAMP-UP 48.4274 0.0000

3paths using RAMP-UP 48.4274 0.0000

2paths using static distribution 48.4274 0.0000

3paths using static distribution 48.4274 0.0000

The initial bitrate measurement on a slower path would give a slightly lower

bitrate due to the delay in receiving the packets, hence lowering the traffic share to a

small extent. However, this effect would diminish in later measurements. Figure 5.3-2

shows the traffic distribution for three paths.

43

Figure 5.3-2 RAMP-UP behaviour when paths have different latencies

5.3.3 Paths with different loss rates

RAMP-UP is not designed to cope with error-induced losses and sees all lossy

paths as congested. It is still important to see its behavior in such an environment. We

used three paths in this experiment, all having 2Mbps bandwidth and 50ms latency. The

losses were set to 0 on path1, 0.5% on path2 and 1% on path3. Again, RAMP-UP does

not declare congestion on any path and hence the traffic share on each path does not

change much as can be seen in Figure 5.3-3. The PSNR values and percentages losses

are shown in Table 5.3-5.

Table 5.3-5 PSNR comparisons; when paths have different loss rates

Scenario PSNR

Percentage

packet loss

All paths have 2Mbps capacity and 50ms

latency, Loss rate for path1 0%, path2 0.05%,

path3 1% Average StdDev

Single Path (path1) 48.4274 0.0000 0.0000

Single Path (path2) 41.8868 0.5059 0.4873

Single Path (path3) 36.1726 0.7050 1.0059

44

The results for RAMP-UP with multiple paths are much better than using single

path RTP over path3 and are comparable with single path RTP over path2. The reason is

obviously that the amount of traffic on the lossy paths is automatically decreased when

multiple paths are used and hence overall percentage loss is also decreased. In a

scenario such as this, where a lossless path is available; the best approach would be to

use the lossless path if there is enough bandwidth. A legacy RTP application would

have no way of knowing which path is lossless, its choice of path would be random and

it might be just as likely of picking a lossy path as picking the lossless one.

Figure 5.3-3 RAMP-UP behaviour when paths have different loss rates

5.3.4 Paths with different bandwidths

RAMP-UP is specifically designed to withstand capacity changes in the

available links by shifting traffic off congested paths. In this experiment, we have two

available paths; path1 with fixed 1Mbps link capacity and path2 with a varying

capacity. Both paths have fixed network delay of 50ms and no losses. Neither of the two

2 paths using RAMP-UP (path1, path2) 43.3902 1.9475 0.2422

3paths using RAMP-UP 40.4923 0.4918 0.4786

45

paths have enough capacity to carry the stream independently. The PSNR value is

shown in Table 5.3-6 and it can be seen that percentage loss is kept below 0.8%.

Table 5.3-6 PSNR and loss rate when paths have different bandwidths

Scenario PSNR Percentage

packet loss Changing capacity on 1 path Average StdDev

2 paths using RAMP-UP 42.9309 2.2293 0.7722

Figure 5.3-4 shows the traffic distribution. It takes RAMP-UP approximately 3

seconds to detect the losses and lower the percentage if the link goes into congestion.

The algorithm would probe the link to see if the congestion has cleared, and balance the

load, however, this probing only takes place at longer intervals to avoid traffic load

oscillations between the paths.

Figure 5.3-4 RAMP-UP behaviour when paths have different bandwidths

5.3.5 Competing RAMP-UP senders

In this experiment, we wanted to observe how RAMP-UP scheduler would

behave while competing with another RAMP-UP sender for the same resources. There

46

are three available paths, path1 with 800kbps capacity, path2 and path3 with 1Mbps

capacity. The delay on all paths is set to 50ms and there are no losses. Two senders A

and B are simultaneously streaming video to two different receivers. Sender A uses

path1 and path2, while sender B uses path1 and path3. Hence path1 is being shared by

the two senders. The results are given in Table 5.3-7. Both senders act fairly towards

each other resulting in a comparable PSNR and percentage loss for each flow. Figure

5.3-5 shows the sending rate of the two senders.

Table 5.3-7 PSNR values for competing RAMP-UP senders

Scenario PSNR Percentage

packet loss Competing RAMP-Ups Average StdDev

Sender A 44.41 0.03 0.13

Sender B 44.50 0.23 0.11

Figure 5.3-5 RAMP-UP senders when competing for common resources

5.3.6 Fixed and wireless paths

Internet users often have a fixed Internet connection along with one or more

wireless connections. Hence, to create a more practical scenario, we tested MPRTP over

one fixed Internet path (Path 2) and a wireless 3G path (Path 1). We used a 1Mbps fixed

capacity for the Internet path, and simulated 3G using the 300s RLC trace provided in

47

[24] with 0.5-1.0% bit error losses. The link capacity was changed at 10s slow intervals

and 1s quick intervals for performance comparison, while the delay was kept constant.

Table 5.3-8 PSNR values for fixed and wireless paths

Scenario PSNR Percentage packet
loss Internet and 3G path Average StdDev

3G link capacity changes at 1s 46.7173 0.2084 0.3296

3G link capacity changes at 10s 42.4825 0.5506 0.8531

Figure 5.3-6 shows the results of the slow capacity changes. The algorithm

assigns more traffic to the Internet link whenever it experiences congestion on the 3G

link. The intervals 110-140 sec and 180-210 seconds demonstrate the scheduler probing

the 3G link for more capacity in order to balance the load. The lossy nature of the 3G

link also inhibits the scheduler from putting too much load on it.

Figure 5.3-6 Path1 is 3G, path2 is Internet. 3G link capacity changes at 10s

Figure 5.3-7 shows the results of the quick capacity changes. In this case the 3G

link has a higher bitrate on average resulting in a more uniform load distribution. For

about 170 seconds, we see that the assigned ratios are not affected by the changes in

48

capacity of the 3G path. This is because the scheduler doesn’t know the actual bitrate of

the path. Despite of the changes in the available bitrate, s ince the capacity of path 1 is

sufficient to carry the traffic that is assigned to it, the scheduler keeps sending the same

ratio of traffic on it.

Figure 5.3-7 Path1 is 3G, path2 is Internet. 3G link capacity changes at 1s

5.3.7 Multiple 3G paths

In our final set of experiments, we evaluate the performance of our algorithm

when using multiple 3G paths in an outdoor environment. The 3G path is simulated as

in the previous case, with slow and quick capacity changes, 0-1% losses and similar

delay values. The combined capacity of the two paths is always kept enough to carry the

stream, which is approximately 1Mbps. Table 5.3-9 shows the PSNR results.

Table 5.3-9 PSNR values for two 3G paths

Scenario PSNR Percentage packet
loss Using two 3G paths Average StdDev

Link capacity changes at 1s 46.1704 0.1751 0.9505

Link capacity changes at 10s 39.2680 1.8932 1.4074

49

Figure 5.3-8 and 5.3-9 show the performance for slow and quick capacity

changes, respectively. The load shifting occurs only when capacity of any path becomes

drops so low that it is unable to carry the percentage of traffic assigned to it. This

behavior becomes more apparent after 180s, before which the load is almost uniformly

distributed between the two paths.

Figure 5.3-8 MPRTP over two 3G paths with link capacity changes at 10s

Figure 5.3-9 shows another aspect of the scheduling algorithm. At about 185

seconds, path 1 begins to experience losses due to a drop in the available capacity and

the algorithm starts using the CB value for calculating percentage distribution. At about

210 seconds, path 2 goes into congestion as well. The percentages are continuously

being updated after this point till about 250 seconds. The ratio assigned at 250 seconds

is almost equal for both paths and similar to what it was before either of the paths had

gone into congestion. This is because the algorithm has not seen losses on either path

and has cleared the CI for both paths. The ratios are once again being calculated on the

basis of TB. The ratio for path 2 is 0.54, which is slightly higher than that of path 1. The

reason for this difference becomes clear if we see the sending bitrate of the paths

between 190 and 210 seconds. The sending bitrate assigned to path 2 during this

interval is higher than the bitrate observed on path 1 throughout the length of the

experiments. This results in a higher value of TB for path 2 in comparison to path 1.

50

Figure 5.3-9 MPRTP over two 3G paths with link capacity changes at 1s

5.3.8 Backward compatibility

As a sanity test to ensure that our MPRTP application could perform with legacy

RTP applications, we did a series of simple tests with gstreamer. We first used an

MPRTP receiver to receive a stream from a gstreamer RTP sender and stored it to a file.

The stream was successfully played back after being received. We then used a MPRTP

sender that sent a video stream over a single path to a gstreamer RTP receiver. In this

case as well, the stream was successfully played back. Finally, to test with multiple

paths, we programmed a MPRTP stream multiplexer. The function of the multiplexer

was to simply receive the incoming stream from multiple paths and transmit it over one

single path. The final test setup is shown in Figure 5.3-10.

In this scenario, we observed that when the out-of-order delivery and jitter

values were within gstreamer’s buffering range, no losses were observed. However,

when the path latencies and/or bandwidths mismatched significantly, we observed that

three gstreamer properties needed to be adjusted to avoid losses. Firstly, for gstreamer to

detect a stream and initialize the jitter buffer, it requires in order packets in the

beginning, and hence using multiple paths can lead to initial frame losses due to

misorder. Secondly, a packet should not be so late that gstreamer thinks that the stream

51

was reset, and new sequence numbers have started. Thirdly, the playout delay should be

sufficient to avoid losses due to late arrival. All these parameters are functions of the

receiver side buffer.

Figure 5.3-10 MPRTP setup for backward compatibility test

5.4 Summary

We conducted a series of experiments to evaluate the performance of our own

MPRTP algorithm, RAMP-UP, and also to better understand the usability and

feasibility of MPRTP in server to client video streaming scenarios.

Our first set of experiments focused on studying behavior over multiple paths in

reference with specific path characteristics. We observed that when sufficient capacity

is available, performance of MPRTP streaming over multiple paths is comparable to

that of single path streaming. The algorithm is not able to completely avoid lossy paths

due to design constraints, however by spreading the stream over multiple paths, the

percentage loss is decreased. Furthermore, by using playout buffering we can effectively

eliminate packet drops due to out-of-order delivery when the paths taken have different

network delays.

The second set of experiments consisted of scenarios when a single path does

not have enough capacity/bitrate to carry the stream, and the load must be split over

multiple paths. The algorithm was able to avoid congestion by shifting load to other

paths. When competing for resources, it delivers some level of fairness by spreading the

load over multiple paths. Furthermore, our simulations show that the algorithm gives

reasonable performance when using a combination of wired and wireless paths. In 3G

scenarios where path bitrates change over time, the algorithm is able to ramp up or

52

down the amount of traffic on the path when the bitrate increases or decreases,

respectively.

Finally, we performed some tests where we used RAMP-UP with gstreamer

RTP pipelines and found that the two could work together smoothly, provided we adjust

the playout parameters of gstreamer to compensate for packet misorder and jitter.

53

Chapter 6

Conclusion

We have presented in this work an extension for RTP that is capable of

simultaneously utilizing multiple paths between endpoints. The extension, MPRTP, is

backward-compatible with RTP applications. It is implemented on application- level and

does not require any kernel- level modifications for deployment. It runs smoothly over

UDP, however, it can run over other transport protocols as well. We also presented our

design and implementation of a sample scheduler called RAMP-UP and a MPRTP

receiver for video streaming scenarios.

6.1 Multipath vs. Single path

Our experiments with RAMP-UP confirmed that MPRTP is capable of

combining the capacity of multiple paths and increase the available bandwidth, allowing

senders to stream high quality videos. Furthermore, splitting the stream across multiple

paths spreads the load, and prevents overloading any one path, and reduces overall

percentage losses when some of the paths are lossy. The effects of jitter and out of order

delivery can be minimized for the stream by using sufficient receiver side buffering, and

introducing playout delay. We observed that RAMP-UP performance over multiple

paths was comparable to similar single path cases. Hence, it is capable of delivering

similar quality while exploiting additional resources.

 For cases where paths had diverse bandwidth values, our application is able to

spread the load across the paths so that none of the paths experiences congestion; given

the combined bandwidth of the paths is sufficient to carry the stream. It is also able to

shift load to other paths if it experiences congestion on a path due to competition with

another application or any other network conditions.

54

6.2 Implementation Challenges and Backward Compatibility

As discussed before, the MPRTP implementation does not require kernel- level

modifications. This ensures quick and easy deployment. MPRTP can also be introduced

to existing RTP applications, however since it operates between RTP and the transport

layer, the modifications require adding an interface that communicates with both these

layers. MPRTP senders that rely on receiver side buffering may induce higher levels of

out-of-order delivery and delayed packets that legacy RTP receivers may not be tolerant

to. Therefore, when upgrading legacy applications to MPRTP, we would need to modify

the buffering parameters as well.

Our experiments with gstreamer confirmed that MPRTP is backward compatible

with legacy RTP applications. The additional MPRTP header is ignored as an

unrecognized extension.

6.3 Future Work

The work in the thesis is conclusive in providing experimental evidence of the

advantages of MPRTP. However, the focus of our work has been video streaming in

unicast scenarios and covers only one possible use case of MPRTP. Our experiments

show positive results but we need a more detailed evaluation using complex network

conditions, wider range of bitrates and diverse video encodings. Our algorithm only

focuses on bandwidth aggregation and congestion avoidance, whereas redundancy,

fallback and avoiding lossy paths can greatly add to the advantages of MPRTP in media

streaming. These aspects also need to be investigated.

Further research is required to carry MPRTP towards maturity as a protocol. The

possibility of integrating our research on MPRTP with rate adaptation (e.g. [25]) needs

to be explored as part of future work. Also, research done in the area of layering and

redundancy for RTP [26] should also be reviewed in the context of availability of

secondary paths in case of MPRTP.

55

References

[1] E. Nordmark and M. Bagnulo , Shim6: Level 3 Multihoming Shim Protocol for IPv6,

Request For Comments 5533, Network Working Group: Retrieved June 2011

http://tools.ietf.org/html/rfc5533

[2] R. Moskowitz, P. Nikander, P. Jokela and T. Henderson, Host Identity Protocol,

Request For Comments 5201, Network Working Group: Retrieved July 2010

http://www.ietf.org/rfc/rfc5201.txt

[3] P. Nikander, T. Henderson, C. Vogt and J. Arkko, End-Host mobility and multihoming

with the Host Identity Protocol, Request For Comments 5206, Network Working

Group: Retrieved July 2010 http://tools.ietf.org/search/rfc5206

[4] R. Stewart, Ed., Stream Control Transmission Protocol, Request For Comments 4960,

Network Working Group: Retrieved July 2010 http://www.rfc-

editor.org/rfc/rfc4960.txt

[5] M. Molteni and M. Villari, Using SCTP with Partial Reliability for MPEG-4 Multimedia

Streaming, Proc. of BSDCon Europe, 2002

[6] Hyelim Park, Myungchul Kim et. al., A mobility management scheme using SCTP-SIP

for realtime services across heterogeneous networks, ACM Symposium on Applied

Computing, 2009

[7] R. Stewart, Ed., Architectural Guidelines for Multipath TCP Development Internet

Draft,Engineering Task Force: Retrieved July 2010 http://tools.ietf.org/html/draft-

ietfmptcp-architecture-01

[8] H.Schulzrinne, S.Casner, R.Frederick and V. Jacobson, RTP Profile for Audio and

Video Conferences with Minimal Control, Request For Comments 3551, Network

Working Group: Retrieved July 2011 < http://www.ietf.org/rfc/rfc3551.txt>

[9] H.Schulzrinne and S.Casner, RTP: A transport protocol for realtime applications,

Request For Comments 3550, Network Working Group: Retrieved July 2010

http://www.ietf.org/rfc/rfc3550.txt

[10] Yi J. Liang, Eckehard G. Steinbach, and Bernd Girod, Multi-stream voice over IP using

packet path diversity,in IEEE Fourth Workshop on Multimedia Signal Processing

http://tools.ietf.org/html/rfc5533
http://www.ietf.org/rfc/rfc5201.txt
http://tools.ietf.org/search/rfc5206
http://www.rfc-editor.org/rfc/rfc4960.txt
http://www.rfc-editor.org/rfc/rfc4960.txt
http://tools.ietf.org/html/draft-ietfmptcp-architecture-01
http://tools.ietf.org/html/draft-ietfmptcp-architecture-01
http://www.ietf.org/rfc/rfc3551.txt
http://www.ietf.org/rfc/rfc3550.txt

56

[11] J. G. Apostolopoulos, Reliable video communication over lossy packet networks

using multiple state encoding and path diversity, in Proceedings Visual

Communication and Image Processing, Jan. 2001.

[12] M. Fiore and C. Casetti, An Adaptive Transport Protocol for Balanced Multihoming

of Real-Time Traffic, IEEE Globecom 2005

[13] H. Schulzrinne, A. Rao and R. Lanphier, Real Time Streaming Protocol (RTSP),

Request For Comments 2326, Network Working Group: Retrieved June 2011

http://www.ietf.org/rfc/rfc2326.txt

[14] M. Handley, H. Schulzrinne et. al. , SIP: Session Initiation Protocol, Request For

Comments 3261, Network Working Group: Retrieved June 2011

http://www.ietf.org/rfc/rfc3261.txt

[15] R. Fielding et. al. , Hypertext Transfer Protocol -- HTTP/1.1, Request For Comments

2616, Network Working Group: Retrieved June 2011

http://www.ietf.org/rfc/rfc2616.txt

[16] Colin Perkins (2003), RTP audio and video for the Internet, Pearson Education

[17] James Harry Greene, Jeane Fleming (2002), Voice and video over IP, McGraw-Hill

Professional Publishing

[18] Trilogy: Architecting the future Internet, Retrieved June 2011 http://trilogy-

project.org/home.html

[19] RTP Tools (Version 1.18), Retrieved June 2011

http://www.cs.columbia.edu/irt/software/rtptools/

[20] J. Rosenberg, Interactive Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal for Offer/Answer Protocols , Request For

Comments 5245, Internet Engineering Task Force (IETF): Retrieved June 2011

http://tools.ietf.org/html/rfc5245

[21] Dominique Fober, Yann Orlarey, Stephane Letz, Real time clock skew estimation

over network delays, Grame, June 2005

[22] GStreamer Good Plugins 0.10 Plugins Reference Manual: GTK-Doc V1.14: Retrieved

June 2010 http://www.gstreamer.net/data/doc/gstreamer/head/gst-plugins-good-

plugins/html/gstplugins-good-plugins-gstrtpjitterbuffer.html

http://www.ietf.org/rfc/rfc2326.txt
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc2616.txt
http://trilogy-project.org/home.html
http://trilogy-project.org/home.html
http://www.cs.columbia.edu/irt/software/rtptools/
http://tools.ietf.org/html/rfc5245
http://www.gstreamer.net/data/doc/gstreamer/head/gst-plugins-good-plugins/html/gstplugins-good-plugins-gstrtpjitterbuffer.html
http://www.gstreamer.net/data/doc/gstreamer/head/gst-plugins-good-plugins/html/gstplugins-good-plugins-gstrtpjitterbuffer.html

57

[23] Nokia, “Homepage of H.264 codec.”, http://research.nokia.com/page/4988

[24] 3GPP R1-081955, “LTE Link Level Throughput Data for SA4 Evaluation Framework.”

May 2008.

[25] V. Singh, J. Ott, and I. Curcio, Rate adaptation for conversational 3G video,

INFOCOM Workshop on Mobile Video Delivery, Rio de Janeiro, Brazil, 2009.

[26] RTP: Redundancy and Layering, Retrieved June 2011,

http://www.cs.columbia.edu/~hgs/rtp/redundancy.html

[27] Netem, Retrieved November 2011,

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

[28] Xiph.org Test Media, Retrieved July 2011, http://media.xiph.org/video/derf/

http://research.nokia.com/page/4988
http://www.cs.columbia.edu/~hgs/rtp/redundancy.html
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

