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Executive summary / Internal release  
Title: High-performance SW directed packet routing 

Software routing promises to offer more adaptive and easily programmable network 
nodes. Until now, however, it has been considered too inefficient for production 
environments in terms of both performance and cost. Several recent studies have 
shown that software routers are now capable of scaling up to the high-performance 
routing tasks even with commodity personal computer (PC) hardware. In this 
deliverable, we have explored the possibility of running a software router on a 
network processing unit (NPU). The focus was to study if this approach provides any 
advantage over traditional off-the-shelf PC hardware with a comparable price point. 
The work was conducted by modifying Click Modular Router software to better utilize 
Cavium OCTEON network processor hardware. 

Content:  This  deliverable  explores  the  possibility  of  running  a  software  router  on  a  network  
processing unit (NPU). The deliverable introduces a modified hardware accelerated version of 
Click Modular Router. The performance of the system is measured using simple raw packet 
forwarding tests. 

Impact: With minor modifications, we were able to significantly improve the performance of 
Click software router on an OCTEON network processor. This was achieved by modifying user 
space Click to take advantage of the available OCTEON hardware accelerator units. Stability 
and throughput test results have proved to be promising and the maximum reached 
throughput is comparable to current-day high-end commodity PC hardware.  

Contact info: Matias Elo, matias.elo@vtt.fi; Sami Ruponen, sami.ruponen@vtt.fi; Markku 
Savela, markku.savela@vtt.fi
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1 Introduction  
Traditionally, software routing has been considered too slow and inefficient for high-
performance routing tasks. During the last few years, however, software routers have started 
to emerge as a viable alternative to hardware routers in certain routing tasks. This has been 
made possible by the constant increase of processing power in commodity PC hardware and 
the availability of efficient open-source operating systems and routing software. 

Certain  network  processors  enable  the  same  possibility  to  run  custom  routing  software  as  
normal  PC  hardware.  They  can  also  provide  hardware  accelerated  units,  such  as  packet  
management accelerators and crypto engines for network packet processing related tasks. The 
overall architecture of network processors is optimized for packet processing making their 
performance comparable to specialized hardware implementations but with the added 
flexibility  that  comes  with  software.  In  addition,  their  performance  per  energy  consumption  
ratio is often more efficient compared to traditional PC hardware. 

This deliverable explores the possibility of running a Linux software routing application on one 
type of  NPU. The work is  carried out by modifying a popular  open source routing application 
Click  Modular  Router  (Click)  [1]  to  take  advantage  of  Cavium  OCTEON  NPU  [2]  features  
directly, bypassing the kernel, network stack and device drivers. With the modifications, very 
high  raw  packet  forwarding  performance  was  achieved  compared  to  a  standard  vanilla  Click  
running on the same hardware. The implementation also supports multithreading on OCTEON 
processors, which allows us to reach better performance with its multicore architecture. In our 
throughput tests, the implementation has reached forwarding rates comparable to high-end 
PCs. 

2 System Components 
Click Modular Router 

Our router implementation is built on Click, which is a modular open-source software router 
platform. Click routers are built from individual components, called elements, each 
implementing different packet processing tasks. Click can be easily extended to support new 
functionality  by  creating  new  elements,  which  are  in  practice  C++  classes.  There  is  also  a  
rather large library of ready-made elements available making it possible to quickly deploy even 
complex systems. 

Routers are built using Click configuration files, where the elements are connected together in 
a directed graph, which the packets then traverse. The elements are connected to each other 
using either push or pull connection method. In push connection the source element passes 
packets downstream to the destination elements whereas in pull connection the packet 
transfer  is  initiated  by  the  destination  element.  Direct  connections  between  push  and  pull  
elements are illegal  and queue elements can be used to make the change while also storing 
packets. Fig. 1 presents a very simple packet forwarding configuration, which receives packets 
from  one  interface  and  then  sends  them  out  from  another.  A  queue  element  is  required,  
because FromDevice uses push connection and ToDevice pull connection. 
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Figure 1.  A simple Click packet forwaring configuration. 

Click  can  be  run  as  a  normal  user  space  application  or  as  a  Linux  kernel  module.  The  
corresponding Click configurations are presented in Fig. 2 and Fig. 3. Traditionally user space 
Click has been used as a more nimble development platform whereas kernel-level Click is used 
when more performance is required. In user space Click, the major bottleneck is in the process 
of  stealing  packets  from  Linux  kernel  and  the  data  copying  between  kernel  and  user  space  
applications. 

 

Figure 2.  Standard user space Click. 

 

Figure 3.  Standard Click kernel module. 

Click also supports multithreading and the required synchronization functions, which are 
critical when concerning the multicore architecture of OCTEON NPUs. The load between cores 
can be adjusted dynamically during runtime or statically in the Click configuration file. [3] 

Cavium OCTEON NPU 

OCTEON  products  from  Cavium  Networks  are  processors  designed  to  be  used  in  routers,  
gateways and other network equipment that require high performance packet processing with 
specialized features. However, they also offer interesting opportunities for applications outside 
their traditional usage. 

OCTEON  network  processors  consist  of  processor  cores,  a  memory  controller  and  additional  
hardware  accelerator  units  that  are  integrated  into  one  chip.  The  purpose  of  the  hardware  
units  is  to  offload  the  cores  from  specialized,  computing  intensive  tasks  and  to  reduce  the  
software complexity and overhead. Although the clock frequency of the processor is relatively 
low and thus the performance of a single core is limited, it is able to achieve high performance 
by its  multicore design.  The processor chips also include different types of  I/O interfaces for  
network and peripheral connections. The cores are based on MIPS64 instruction set with some 
additional Cavium-specific instructions. 
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While the processor itself  may seem complex,  the software development process for  utilizing 
all the features is made relatively easy. A standard GNU C/C++ compiler, supporting 
development tools and Cavium’s C-language APIs, called Simple Executive (SE), to the 
hardware  units  are  made  available;  hence  with  a  moderate  effort  one  can  make  special  
software taking advantage of the available hardware acceleration. 

What makes this processor interesting for certain applications, like our work, is its ability to 
run Linux kernel and applications. Basically, one can take e.g. a stock Debian GNU/Linux with 
customized kernel and use it as any other Linux running on some common PC hardware. 

The accelerator units can be categorized based on the type of acceleration they provide for the 
overall packet processing: packet-management, security and application accelerator units. 
Different processor models include different sets of accelerator units, but every model has the 
packet-management  accelerator  units.  In  general,  these  units  take  part  in  processing  every  
packet received or transmitted by the processor. The units execute their functions without 
assistance from software running on the cores, though software can customize the operation 
by accessing certain configuration registers. 

A  generalized  view  of  the  OCTEON  processors  is  given  in  Fig.  4  showing  the  packet-
management accelerators: Packet Input (PKI), Packet Output (PKO), Free Pool Allocator (FPA) 
and Schedule/Synchronization/Order (SSO) units and also the cores, memory and their 
interconnections. 

PKI handles every incoming packet and is responsible for verifying checksums, classifying the 
flow,  obtaining  buffers  for  the  packet  data  and  copying  the  data  into  the  memory.  It  also  
determines the Quality of Service (QoS) class for internal processing of the packet. In a similar 
fashion, PKO is responsible for retrieving the packet data from the memory and calculating the 
checksums for transmitted packets. It also handles QoS and output queuing of the packets and 
freeing of packet buffers. 

FPA is responsible for managing different buffer pools including the packet data buffers. It 
keeps records of free buffers and assigns one on request. 

From the cores’ perspective, every packet is seen as a work for them. When a core becomes 
ready, it can request more work from the SSO, which schedules them the highest priority work 
from the work queue. SSO is responsible for synchronizing the packet processing especially 
when packets are processed in parallel giving each core an exclusive access to certain data if 
required.  It  also  maintains  the  ingress  order  of  packets  for  ordered  transmissions  in  co-
operation with the PKI and PKO. 
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Figure 4.  Simplified OCTEON packet flow [4]. 

Fig.  4  also  shows  a  typical  operation  of  different  hardware  units  for  an  incoming  Ethernet  
packet.  Detailed description of  the units’  operation is  omitted.  The solid (purple) lines depict  
packet data being copied or accessed and the dashed (green) lines where only instructions and 
addresses are shifted. 

First  the  packet  is  copied  into  PKI’s  internal  buffer  (1).  PKI  then  requests  a  buffer  for  the  
packet data and for the work entry from FPA (2a), copies the data into the assigned buffer in 
the memory (2b) and sends a work entry to the SSO including relevant information of the 
received packet (2c). 

After a core becomes idle, it can ask SSO for more work (3a) and if one is available it gets the 
detailed packet information with memory locations etc. Software running in the core can now 
start  processing  the  packet  as  programmed  (3b).  When  finished  the  core  can  e.g.  drop  the  
packet freeing the resources or send an instruction to PKO for scheduling the packet for output 
(3c). After this, the core software does not attend to the output process. 

PKO receives the instruction that has information about the packet: the address where the 
packet data resides, the length of the packet and from which port it should be sent out. In the 
order of the output queue, PKO retrieves the packet from the memory to its internal buffer 
(4a), calculates necessary checksums and sends the packet out from the proper port (4b). PKO 
can then free the buffer by giving it back to FPA (4c). 

3 System Implementation 
Our system is based on the latest user space Click version (2.0.1). We are using Linux kernel 
version 2.6.32.27 that is included in the proprietary Cavium OCTEON SDK version 2.2. There is 
also  an  open-source  version  of  the  SDK  available  for  free  use  [5].  The  modified  Click  was  
tested  on  two  different  category  OCTEON  devices:  a  low-end  OCTEON  model  CN5020  that  
includes three 1 Gbps Ethernet interfaces and two processor cores running at 500 MHz, and a 
higher-end  OCTEON  model  CN5750  with  two  10  Gbps  Ethernet  interfaces  and  12  processor  
cores running at 750 MHz. We created a series of patches, which add our modifications to the 
standard Click code path. After this, Click is cross-compiled to run on OCTEON processors 
using the tools from the SDK. 
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The  basic  architecture  of  our  system  is  presented  in  Fig.  5.  The  user  space  approach  was  
selected,  because it  offered an easier  way to fit  OCTEON’s buffer  management to the simple 
user space Click Packet structure. Kernel-level Click uses a Packet structure based on sk_buff, 
which is used everywhere within the Linux kernel and has very strict usage rules. The target of 
the development was also to minimize all interactions with the kernel.  

Simple Executive calls enable to use the hardware directly from user space bypassing the 
kernel and the network stack, so all packet processing happens in user space. This removes 
the need for transferring data between kernel and user space, thus allowing Click to perform 
comparably to a kernel-level implementation. Operating in user space is also more secure and 
has fewer opportunities to compromise the system stability. However, running applications 
that use SE calls is not recommended in a multi-user system, because through SE calls the 
application has more or less unlimited access to the OCTEON hardware and memory. 

 

Figure 5.  User space Click running on OCTEON hardware. 

Our implementation presents two new Click elements FromOcteon and ToOcteon that replace 
standard Click FromDevice and ToDevice elements. These two elements communicate directly 
with  the  OCTEON hardware  using  SE  calls.  Our  elements  should  be  fully  compatible  with  all  
current user space Click elements, which makes porting of current Click configurations to 
OCTEON hardware quite simple. 

FromOcteon element uses polling to fetch new packets from the OCTEON hardware. In practice, 
it  requests  new  work  from  the  SSO.  After  it  has  received  new  work,  it  creates  a  new  Click  
packet, which includes a pointer to the actual packet data stored in the OCTEON buffer. This 
Click packet is then passed downstream to the next element in the configuration. ToOcteon 
element sends the packet to the PKO unit, which takes care of the output queuing. Due to this, 
ToOcteon can use push connection method and requires no separate queue element. 

Additionally, minor modifications to Click were needed to better support OCTEON hardware. 
Code for initializing and releasing OCTEON hardware resources was added to Click, and small 
changes  were  also  required  to  Click’s  packet  class  to  enable  it  to  use  OCTEON packet  pools  
when  creating  new  packets.  Standard  Click  provides  atomic  operations  only  for  x86  
architecture, so we added similar operations for MIPS architecture from the OCTEON SDK. 

OCTEON  hardware  can  take  care  of  the  packet  order,  which  simplifies  the  creation  of  
multithreaded  Click  configurations.  However,  this  has  a  negative  effect  on  the  maximum  
performance due to the required locking in the output unit. Due to this, we have made locking 
an optional parameter in the ToOcteon element. 

4 Experimental Performance Evaluation 
The early performance measurements on the hardware accelerated Click were performed with 
a minimalistic setup. The test setup consisted of two OCTEON NPUs connected together using 
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full-duplex 10 GBASE-SR transceivers and fibers as presented in Fig. 6. One OCTEON device is 
running an example traffic generator application from the OCTEON SDK. The traffic generator 
is running as a stand-alone application without any Linux operating system. Although the 
accuracy  of  the  traffic  generator  has  not  been  well  tested,  it  servers  the  purpose  for  early  
performance tests. 

The  traffic  generator  is  capable  of  reaching  line  speed  at  10  Gbps  even  with  minimum sized  
Ethernet frames. The generator sends frames from one interface and listens for incoming 
frames from another interface. A second device is running Linux with a user space Click having 
a configuration that simply forwards frames from one interface to another. No queue element 
is required, because the input of ToOcteon element operates in push mode. Using this 
configuration, we can detect from the traffic generator when the system running Click starts to 
drop frames. This setup provides sufficient accuracy for the initial performance tests. 

 

Figure 6.  Raw throughput test setup. 

Using the above mentioned test setup we measured the maximum loss-free forwarding rate 
(MLFFR)  using  different  number  of  OCTEON  cores  and  different  frame  sizes.  The  first  
measurements were performed with minimum sized Ethernet frames, and the related results 
are presented in the Fig. 7. The 64-byte frames that were used included Ethernet, IP and UDP 
headers,  minimum  payload  and  Ethernet  cyclic  redundancy  check  (CRC)  value.  This  test  
illustrates the worst-case scenario when the NPU has the least time to perform its operations. 
The measurements were repeated with varying number of cores dedicated for running Click to 
see how the performance scales. The theoretical line speed of a 10 Gbps Ethernet link when 
using 7-byte preamble, 1-byte Start Frame Delimiter, 64-byte Ethernet payload and 12-byte 
inter  frame  gap  is  approximately 14.88 million frames per second 

.
10 000 000 000

( [ ]+64 [ ]+12 [ ])
. 
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Figure 7.  Raw frame forwarding rate with minimum sized (64 Bytes) Ethernet frames. 

As  can  be  seen  from  the  figure  above,  the  achieved  performance  is  still  far  away  from  the  
theoretical maximum. However, the results are comparable to the numbers achieved in 
another study on high-end PC hardware [6]. The overhead from using multiple concurrent 
threads can be seen in Fig. 7 as the frame rate does not increase linearly when the core count 
is increased. A similar test was conducted with the low-end device, which was able to reach 1 
Gbps line speed with minimum sized frames using two cores.  

In the second measurement, the frame size was increased until the system reached line speed 
processing. The test was again repeated with varying number of cores in use. The test helps to 
understand the effect of the frame size to the system performance. The results of this test are 
presented in Fig. 8. 

 

Figure 8.  The minimum frame size to reach line speed. 

The figure shows, that the effect from adding more cores quickly decreases and already with 
seven cores the performance increase is minimal. This means that adding more cores will not 
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improve the forwarding performance any further leaving the other cores free for other tasks. 
The bottleneck causing this effect requires further studies. 

Fig. 9 visualizes the effect of frame size to the maximum forwarding rate. It shows that with 
our current implementation, Click is able to achieve the 10 Gbps theoretical line speed with a 
frame size  of  128  bytes.  With  256-byte  frames  the  device  can  reach  line  speed  with  only  6  
cores.  This  shows  potential  for  the  router  implementation,  as  data  frames  in  real-world  
networks are usually considerably larger than 64-bytes. 

 

Figure 9.  Raw frame throughput with different frame sizes. 

To better understand the performance requirements, the available instruction count per 
incoming packet at 10 Gbps speed can be estimated. Considering the worst-case scenario, that 
is using minimum sized Ethernet frames, the corresponding packet rate is 14.88 million 
packets  per  second.  With  a  core  frequency  of  750  MHz  there  are  roughly  50  clock  cycles  
available to complete packet processing. By further estimating that one instruction finishes per 
clock cycle, 50 instructions can be consumed on processing one packet. This means that there 
are  hardly  any  spare  cycles  to  spend.  Even  by  multiplying  this  with  12  the  instruction  count  
increases to only 600. Taking into account the internal  overhead of  different hardware units,  
the effective instructions available for actual packet processing are further reduced. 

We also measured a rough power usage of the two devices in idle state and under load. The 
load power consumption was measured during the throughput test. These measurements are 
shown in Fig. 10. Both devices managed to keep their power usage at reasonable levels taking 
into  account  their  packet  processing  performance.  We  argue  that  the  power  consumption  is  
very competitive although we were not able to conduct comparative tests with similarly 
performing PC hardware. 
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Figure 10.  Measured power consumption. 

5 Conclusions and Future Work 
In this deliverable, we have explored the feasibility of running a software router on a network 
processor. With minor modifications, we were able to significantly improve the performance of 
Click software router on an OCTEON network processor. This was achieved by modifying user 
space Click to take advantage of the available OCTEON hardware accelerator units. Stability 
and throughput test results proved to be promising though some bottlenecks still affect the 
overall performance. The implementation is still a work in progress, and the performance can 
probably be improved with further development. However, with the given stringent timescales 
the code optimization may require considerable effort. 

To better understand the system performance more accurate measurements are required. 
Deeper analysis is required for identifying the remaining system bottlenecks. More OCTEON 
features could be included into the Click framework, such as: checksum computation, 
cryptographic  algorithm  and  hash  calculations,  and  QoS  classes.  These  work  items  will  be  
tackled in the near future. 
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Appendix: Software installation 

Prerequisites 
 Click Modular Router, http://www.read.cs.ucla.edu/click/click (tested on commit

7104dd4913d9f74d13cd82eb93890718369b1336)
 Click OCTEON patches
 Cavium OCTEON SDK 2.2, http://cnusers.org/ (Open Source version available)

Installation 
1. After installing and setting up the OCTEON SDK download the most recent Click source

code from the GIT repository
git clone git://read.cs.ucla.edu/git/click DIR 

2. Move to the Click folder and apply our patches
cd click 
patch -p1 < PATCH 

3. Configure user space Click for OCTEON devices
autoconf 
./configure --disable-linuxmodule --enable-userlevel \ 
--host=mips64-octeon-linux-gnu --build=i684-linux \ 
--enable-tools=mixed --enable-octeon --enable-user-multithread \ 
--enable-ipsec 

4. Build user-level Click
cd userlevel 
make  


